Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37108257

RESUMO

Low-level laser therapy (LLLT) is a treatment that is increasingly used in orthopedics practices. In vivo and in vitro studies have shown that low-level laser therapy (LLLT) promotes angiogenesis, fracture healing and osteogenic differentiation of stem cells. However, the underlying mechanisms during bone formation remain largely unknown. Factors such as wavelength, energy density, irradiation and frequency of LLLT can influence the cellular mechanisms. Moreover, the effects of LLLT are different according to cell types treated. This review aims to summarize the current knowledge of the molecular pathways activated by LLLT and its effects on the bone healing process. A better understanding of the cellular mechanisms activated by LLLT can improve its clinical application.


Assuntos
Terapia com Luz de Baixa Intensidade , Osteogênese , Consolidação da Fratura , Células-Tronco , Diferenciação Celular/efeitos da radiação
2.
Int J Mol Sci ; 22(14)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34299021

RESUMO

In this article, we provide an extensive review of the recent literature of the signaling pathways modulated by Pulsed Electromagnetic Fields (PEMFs) and PEMFs clinical application. A review of the literature was performed on two medical electronic databases (PubMed and Embase) from 3 to 5 March 2021. Three authors performed the evaluation of the studies and the data extraction. All studies for this review were selected following these inclusion criteria: studies written in English, studies available in full text and studies published in peer-reviewed journal. Molecular biology, identifying cell membrane receptors and pathways involved in bone healing, and studying PEMFs target of action are giving a solid basis for clinical applications of PEMFs. However, further biology studies and clinical trials with clear and standardized parameters (intensity, frequency, dose, duration, type of coil) are required to clarify the precise dose-response relationship and to understand the real applications in clinical practice of PEMFs.


Assuntos
Fraturas Ósseas/radioterapia , Magnetoterapia/métodos , Osteogênese/efeitos da radiação , Transdução de Sinais/efeitos da radiação , Células-Tronco/efeitos da radiação , Bases de Dados Factuais , Campos Eletromagnéticos , Humanos , Osteogênese/genética , Transdução de Sinais/genética , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA