Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Pollut ; 228: 245-255, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28550797

RESUMO

Septic tank effluent (STE) contributes to catchment nutrient and pollutant loads. To assess the role of STE discharges in impairment of surface water, it is essential to identify the sources of pollution by tracing contaminants in watercourses. We examined tracers that were present in STE to establish their potential for identifying STE contamination in two stream systems (low and high dilution levels) against the background of upstream sources. The studied tracers were microbial, organic matter fluorescence, caffeine, artificial sweeteners and effluent chemical concentrations. The results revealed that tracer concentration ratios Cl/EC, Cl/NH4-N, Cl/TN, Cl/TSS, Cl/turbidity, Cl/total coliforms, Cl/sucralose, Cl/saccharin and Cl/Zn had potential as tracers in the stream with low dilution level (P < 0.05). Fluorescence spectroscopy could detect STE inputs through the presence of the tryptophan-like peak, but was limited to water courses with low level of dilution and was positively correlated with stream Escherichia coli (E. coli) and soluble reactive phosphorus (SRP). The results also suggested that caffeine and artificial sweeteners can be suitable tracers for effluent discharge in streams with low and high level of dilution. Caffeine and saccharin were positively correlated with faecal coliforms, E. coli, total P and SRP, indicating their potential to trace discharge of a faecal origin and to be a marker for effluent P. Caffeine and SRP had similar attenuation behaviour in the receiving stream waters suggesting caffeine's potential role as a surrogate indicator for the behaviour of P downstream of effluent inputs. Taken together, results suggest that a single tracer alone was not sufficient to evaluate STE contamination of watercourses, but rather a combination of multiple chemical and physical tracing approaches should be employed. A multiple tracing approach would help to identify individual and cumulative STE inputs that pose risks to stream waters in order to prioritise and target effective mitigation measures.


Assuntos
Monitoramento Ambiental/métodos , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/análise , Líquidos Corporais , Escherichia coli , Fezes/química , Fósforo/análise
2.
Environ Pollut ; 223: 277-285, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28109547

RESUMO

Contaminants in septic tank effluent (STE) are expected to be removed by the soil system before discharging to the environment. However, potential contaminants such as phosphorus (P), caffeine and artificial sweeteners do find their way to watercourses impacting aquatic eco systems. In this study, the attenuation of STE P, caffeine and saccharin were investigated in untreated soil and in soil with reduced microbial activity, in aqueous solutions and in the complex matrix of STE. Time series sorption and desorption experiments using batch equilibrium and a column experiment of STE P attenuation were conducted. The results revealed that the soil distribution coefficients (Kd) were: P 81.57 > caffeine 22.16 > saccharin 5.98 cm3/g, suggesting greater soil affinity to P adsorption. The data revealed that 80% of saccharin and 33% of caffeine attenuation was associated with microbial activities rather than adsorption processes. However, a complete removal of saccharin and caffeine did not occur during the equilibration period, suggesting their leaching potential. The dominant mechanism of P attenuation was adsorption (chemical and physical), yielding P retention of >73% and 35% for P in aqueous solution and in STE matrix, respectively, for batch equilibrium. The soil in the column acted as effluent P sink retaining 125 µg P/g soil of effluent P. The attenuation of P, caffeine and saccharin in the aqueous solution was greater than in STE, suggesting that the complex composition of STE reduced soil adsorption ability, and that other substances present in STE may be competing for soil binding sites. The data revealed that caffeine and P had similarities in the interaction with soils and thus caffeine may be considered as a STE tracer of anthropogenic source of P in receiving waters.


Assuntos
Cafeína/análise , Fósforo/análise , Sacarina/análise , Esgotos/química , Poluentes do Solo/análise , Solo/química , Adsorção , Cafeína/química , Monitoramento Ambiental , Fósforo/química , Sacarina/química , Poluentes do Solo/química , Edulcorantes/análise , Edulcorantes/química , Reino Unido , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química
3.
Sci Total Environ ; 542(Pt A): 854-63, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26556750

RESUMO

Small point sources of pollutants such as septic tanks are recognised as significant contributors to streams' pathogen and nutrient loadings, however there is little data in the UK on which to judge the potential risks that septic tank effluents (STEs) pose to water quality and human health. We present the first comprehensive analysis of STE to help assess multi-pollutant characteristics, management-related risk factors and potential tracers that might be used to identify STE sources. Thirty-two septic tank effluents from residential households located in North East of Scotland were sampled along with adjacent stream waters. Biological, physical, chemical and fluorescence characterisation was coupled with information on system age, design, type of tank, tank management and number of users. Biological characterisation revealed that total coliforms and Escherichia coli (E. coli) concentration ranges were: 10(3)-10(8) and 10(3)-10(7)MPN/100 mL, respectively. Physical parameters such as electrical conductivity, turbidity and alkalinity ranged 160-1730 µS/cm, 8-916 NTU and 15-698 mg/L, respectively. Effluent total phosphorus (TP), soluble reactive P (SRP), total nitrogen (TN) and ammonium-N (NH4-N) concentrations ranged 1-32, <1-26, 11-146 and 2-144 mg/L, respectively. Positive correlations were obtained between phosphorus, sodium, potassium, barium, copper and aluminium. Domestic STE may pose pollution risks particularly for NH4-N, dissolved P, SRP, copper, dissolved N, and potassium since enrichment factors were >1651, 213, 176, 63, 14 and 8 times that of stream waters, respectively. Fluorescence characterisation revealed the presence of tryptophan peak in the effluent and downstream waters but not detected upstream from the source. Tank condition, management and number of users had influenced effluent quality that can pose a direct risk to stream waters as multiple points of pollutants.


Assuntos
Esgotos/análise , Eliminação de Resíduos Líquidos/métodos , Poluentes da Água/análise , Monitoramento Ambiental , Escherichia coli , Nitrogênio/análise , Fósforo/análise , Escócia
4.
J Environ Manage ; 150: 427-434, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25560657

RESUMO

Increased concentrations and loads of soluble, bioavailable forms of phosphorus (P) are a major cause of eutrophication in streams, rivers and lakes in many countries around the world. To implement P control measures, it is essential to identify P sources and their relative load contributions. A proportion of P loading generated from household wastewaters is derived from detergents yet the P compositions of the range of domestic detergents and their usage is poorly understood. To quantify P loads from household detergents, we analysed a large range of detergents and cleaning products commonly available in the UK and Europe, comparing regular and eco-labelled products. Chemical data were coupled with survey results on typical household detergents preferences and usage (n = 95 households). We also determined whether the major and trace element signatures of these household detergents could potentially be used as anthropogenic tracers in watercourses. The greatest P concentrations were found for regular dishwasher detergents (43-131 mg P/g detergent) whilst the range of P in eco-labelled dishwasher detergents was much lower (0.7-9.1 mg P/g detergent). Other household cleaning groups contained relatively smaller P concentrations. Considering the survey results, detergents' total P loading generated from one household using either regular or eco labelled products, was 0.414 and 0.021 kg P/year, respectively. Given a household occupancy of 2.7, the P load from all detergent use combined was 0.154 kg P/person/year of which the dishwasher contribution was 0.147 kg P/person/year. In terms of elemental signatures, (DWD) dishwasher detergents were significantly (P-value <0.001) different from other household cleaning products in their As, Na, TP, Si, Sr, SRP, Ti, Zn and Zr signatures. Na, P and B were all positively correlated with each other, indicating their potential use as a tracer suite for septic tank effluent in combination with other indices. We conclude that forthcoming legislation for reducing P contents in domestic laundry detergents will not address the dominant environmental P load from DWD and studies such as this are important in promoting and allowing scenarios of benefits from future legislation for DWD.


Assuntos
Eutrofização , Fósforo/química , Poluentes Químicos da Água/química , Detergentes/química , Drenagem Sanitária/estatística & dados numéricos , Monitoramento Ambiental , Europa (Continente) , Características da Família , Humanos , Poluição da Água/legislação & jurisprudência , Poluição da Água/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA