Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Epilepsy Res ; 196: 107219, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37660585

RESUMO

The thalamus is a key structure that plays a crucial role in initiating and propagating seizures. Recent advancements in neuroimaging and neurophysiology have identified the thalamus as a promising target for neuromodulation in drug-resistant epilepsies. This review article presents the latest innovations in thalamic targets and neuromodulation paradigms being explored in pilot or pivotal clinical trials. Multifocal temporal plus or posterior quadrant epilepsies are evaluated with pulvinar thalamus neuromodulation, while centromedian thalamus is explored in generalized epilepsies and Lennox Gastaut syndrome. Multinodal thalamocortical neuromodulation with novel stimulation paradigms such as long bursting or low-frequency stimulation is being investigated to quench the epileptic network excitability. Beyond seizure control, thalamic neuromodulation to restore consciousness is being studied. This review highlights the promising potential of thalamic neuromodulation in epilepsy treatment, offering hope to patients who have not responded to conventional medical therapies. However, it also emphasizes the need for larger randomized controlled trials and personalized stimulation paradigms to improve patient outcomes further.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia Generalizada , Síndrome de Lennox-Gastaut , Humanos , Tálamo , Convulsões
2.
Epilepsia ; 64(7): 1925-1938, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37119434

RESUMO

OBJECTIVE: We aimed to identify corticothalamic areas and electrical stimulation paradigms that optimally enhance breathing. METHODS: Twenty-nine patients with medically intractable epilepsy were prospectively recruited in an epilepsy monitoring unit while undergoing stereoelectroencephalographic evaluation. Direct electrical stimulation in cortical and thalamic regions was carried out using low (<1 Hz) and high (≥10 Hz) frequencies, and low (<5 mA) and high (≥5 mA) current intensities, with pulse width of .1 ms. Electrocardiography, arterial oxygen saturation (SpO2 ), end-tidal carbon dioxide (ETCO2 ), oronasal airflow, and abdominal and thoracic plethysmography were monitored continuously during stimulations. Airflow signal was used to estimate breathing rate, tidal volume, and minute ventilation (MV) changes during stimulation, compared to baseline. RESULTS: Electrical stimulation increased MV in the amygdala, anterior cingulate, anterior insula, temporal pole, and thalamus, with an average increase in MV of 20.8% ± 28.9% (range = 0.2%-165.6%) in 19 patients. MV changes were associated with SpO2 and ETCO2 changes (p < .001). Effects on respiration were parameter and site dependent. Within amygdala, low-frequency stimulation of the medial region produced 78.49% greater MV change (p < .001) compared to high-frequency stimulation. Longer stimulation produced greater MV changes (an increase of 4.47% in MV for every additional 10 s, p = .04). SIGNIFICANCE: Stimulation of amygdala, anterior cingulate gyrus, anterior insula, temporal pole, and thalamus, using certain stimulation paradigms, enhances respiration. Among tested paradigms, low-frequency, low-intensity, long-duration stimulation of the medial amygdala is the most effective breathing enhancement stimulation strategy. Such approaches may pave the way for the future development of neuromodulatory techniques that aid rescue from seizure-related apnea, potentially as a targeted sudden unexpected death in epilepsy prevention method.


Assuntos
Eletrocorticografia , Epilepsia , Taxa Respiratória , Respiração , Taxa Respiratória/fisiologia , Tonsila do Cerebelo , Lobo Temporal , Tálamo , Estudos Prospectivos
4.
Epilepsy Res ; 184: 106954, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35661572

RESUMO

BACKGROUND: Deep brain stimulation (DBS) of the centromedian nucleus (CM) is an effective therapeutic option for select patients with generalized epilepsy. However, several studies suggest that success varies with active contact location within the CM and the exact target remains undefined. OBJECTIVE: To quantify the association between active contact location and outcomes across all published series of CM DBS. METHODS: A literature search using PRISMA criteria was performed to identify all studies that reported active contact locations PLUS outcomes following DBS of the CM for epilepsy. Patient, disease, treatment, and outcome data were extracted for statistical analysis. Active contact locations were analyzed on a common reference frame and weighted by percent seizure reduction at last follow-up. RESULTS: From 184 studies that were screened for review, 3 studies comprising 47 patients met criteria for inclusion and were analyzed. At time of surgery, mean duration of epilepsy was 18 years. Pooled rates of atonic, atypical absence, generalized tonic-clonic, myoclonic, and tonic epilepsies were 38%, 74%, 68%, 14%, and 60%, respectively. Indirect targeting was used in all these studies. After a mean follow-up duration of 2.3 years, 87% of patients were deemed to be responders with mean seizure reduction of 73% (95% CI: [64%-81%]). Optimal location of the active contact was found to be at the dorsal border of the CM. CONCLUSIONS: Success following DBS of the CM for epilepsy varies by active contact location, even within the CM. Our findings suggest that stimulation within the dorsal region of the CM improves outcomes. Additional studies are needed to further refine these findings.


Assuntos
Estimulação Encefálica Profunda , Epilepsia Tipo Ausência , Epilepsia Generalizada , Núcleos Intralaminares do Tálamo , Epilepsia Generalizada/terapia , Humanos , Convulsões , Tálamo
5.
Epilepsia ; 63(9): e106-e111, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35751497

RESUMO

Seizure clusters are seizures that occur in rapid succession during periods of heightened seizure risk and are associated with substantial morbidity and sudden unexpected death in epilepsy. The objective of this feasibility study was to evaluate the performance of a novel seizure cluster forecasting algorithm. Chronic ambulatory electrocorticography recorded over an average of 38 months in 10 subjects with drug-resistant epilepsies was analyzed pseudoprospectively by dividing data into training (first 85%) and validation periods. For each subject, the probability of seizure clustering, derived from the Kolmogorov-Smirnov statistic using a novel algorithm, was forecasted in the validation period using individualized autoregressive models that were optimized from training data. The primary outcome of this study was the mean absolute scaled error (MASE) of 1-day horizon forecasts. From 10 subjects, 394 ± 142 (mean ± SD) electrocorticography-based seizure events were extracted for analysis, representing a span of 38 ± 27 months of recording. MASE across all subjects was .74 ± .09, .78 ± .09, and .83 ± .07 at .5-, 1-, and 2-day horizons. The feasibility study demonstrates that seizure clusters are quasiperiodic and can be forecasted to clinically meaningful horizons. Pending validation in larger cohorts, the forecasting approach described herein may herald chronotherapy during imminent heightened seizure vulnerability.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Eletrocorticografia , Previsões , Humanos , Convulsões/diagnóstico
6.
J Neural Eng ; 17(6)2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33059336

RESUMO

Objective.There is an unmet need to develop seizure detection algorithms from brain regions outside the epileptogenic cortex. The study aimed to demonstrate the feasibility of classifying seizures and interictal states from local field potentials (LFPs) recorded from the human thalamus-a subcortical region remote to the epileptogenic cortex. We tested the hypothesis that spectral and entropy-based features extracted from LFPs recorded from the anterior nucleus of the thalamus (ANT) can distinguish its state of ictal recruitment from other interictal states (including awake, sleep).Approach. Two supervised machine learning tools (random forest and the random kitchen sink) were used to evaluate the performance of spectral (discrete wavelet transform-DWT), and time-domain (multiscale entropy-MSE) features in classifying seizures from interictal states in patients undergoing stereo-electroencephalography (EEG) evaluation for epilepsy surgery. Under the supervision of IRB, field potentials were recorded from the ANT in consenting adults with drug-resistant temporal lobe epilepsy. Seizures were confirmed in the ANT using line-length and visual inspection. Wilcoxon rank-sum method was used to test the differences in spectral patterns between seizure and interictal (awake and sleep) states.Main results.79 seizures (10 patients) and 158 segments (approx. 4 h) of interictal stereo-EEG data were analyzed. The mean seizure detection latencies with line length in the ANT varied between seizure types (range 5-34 s). However, the DWT and MSE in the ANT showed significant changes for all seizure types within the first 20 s after seizure onset. The random forest (accuracy 93.9% and false-positive 4.6%) and the random kitchen sink (accuracy 97.3% and false-positive 1.8%) classified seizures and interictal states.Significance.These results suggest that features extracted from the thalamic LFPs can be trained to detect seizures that can be used for monitoring seizure counts and for closed-loop seizure abortive interventions.


Assuntos
Epilepsia , Convulsões , Adulto , Eletroencefalografia/métodos , Epilepsia/diagnóstico , Humanos , Aprendizado de Máquina , Convulsões/diagnóstico , Tálamo
7.
Ann Clin Transl Neurol ; 6(8): 1552-1558, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31402630

RESUMO

The causal role of midline thalamus in the initiation and early organization of mesial temporal lobe seizures is studied. Three patients undergoing stereoelectroencephalography were enrolled for the placement of an additional depth electrode targeting the midline thalamus. The midline thalamus was recruited in all three patients at varying points of seizure initiation (0-13 sec) and propagation (9-60 sec). Stimulation of either thalamus or hippocampus induced similar habitual seizures. Seizure-induced in the hippocampus rapidly recruited the thalamus. Evoked potentials demonstrated stronger connectivity from the hippocampus to the thalamus than in the opposite direction. The midline thalamus can be within the seizure initiation and symptomatogenic circuits.


Assuntos
Epilepsia do Lobo Temporal/fisiopatologia , Tálamo/fisiopatologia , Adulto , Estimulação Elétrica , Eletroencefalografia , Potenciais Evocados , Hipocampo , Humanos , Convulsões
8.
Ann Clin Transl Neurol ; 6(9): 1836-1848, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31468745

RESUMO

OBJECTIVE: To investigate dynamic changes in neural activity between the anterior nucleus of the thalamus (ANT) and the seizure onset zone (SOZ) in patients with drug-resistant temporal lobe epilepsy (TLE) based on anatomic location, seizure subtype, and state of vigilance (SOV). METHODS: Eleven patients undergoing stereoelectroencephalography for seizure localization were recruited prospectively for local field potential (LFP) recording directly from the ANT. The SOZ was identified using line length and epileptogenicity index. Changes in power spectral density (PSD) were compared between the two anatomic sites as seizures (N = 53) transitioned from interictal baseline to the posttermination stage. RESULTS: At baseline, the thalamic LFPs were significantly lower and distinct from the SOZ with the presence of higher power in the fast ripple band (P < 0.001). Temporal changes in ictal power of neural activity within ANT mimic those of the SOZ, are increased significantly at seizure onset (P < 0.05), and are distinct for seizures that impaired awareness or that secondarily generalized (P < 0.05). The onset of seizure was preceded by a decrease in the mean power spectral density (PSD) in ANT and SOZ (P < 0.05). Neural activity correlated with different states of vigilance at seizure onset within the ANT but not in the SOZ (P = 0.005). INTERPRETATION: The ANT can be recruited at the onset of mesial temporal lobe seizures, and the recruitment pattern differs with seizure subtypes. Furthermore, changes in neural dynamics precede seizure onset and are widespread to involve temporo-thalamic regions, thereby providing an opportunity to intervene early with closed-loop DBS.


Assuntos
Eletroencefalografia/métodos , Epilepsias Parciais/fisiopatologia , Epilepsia do Lobo Temporal/fisiopatologia , Convulsões/fisiopatologia , Lobo Temporal/fisiopatologia , Tálamo/fisiopatologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA