Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(30): e2221413120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37433002

RESUMO

Effects of micronutrients on brain connectivity are incompletely understood. Analyzing human milk samples across global populations, we identified the carbocyclic sugar myo-inositol as a component that promotes brain development. We determined that it is most abundant in human milk during early lactation when neuronal connections rapidly form in the infant brain. Myo-inositol promoted synapse abundance in human excitatory neurons as well as cultured rat neurons and acted in a dose-dependent manner. Mechanistically, myo-inositol enhanced the ability of neurons to respond to transsynaptic interactions that induce synapses. Effects of myo-inositol in the developing brain were tested in mice, and its dietary supplementation enlarged excitatory postsynaptic sites in the maturing cortex. Utilizing an organotypic slice culture system, we additionally determined that myo-inositol is bioactive in mature brain tissue, and treatment of organotypic slices with this carbocyclic sugar increased the number and size of postsynaptic specializations and excitatory synapse density. This study advances our understanding of the impact of human milk on the infant brain and identifies myo-inositol as a breast milk component that promotes the formation of neuronal connections.


Assuntos
Aleitamento Materno , Leite Humano , Feminino , Lactente , Humanos , Animais , Camundongos , Ratos , Neurônios , Inositol/farmacologia , Açúcares
2.
Biomaterials ; 291: 121865, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36332287

RESUMO

OBJECTIVE: While lipid-lowering drugs have become a mainstay of clinical therapy these treatments only slow the progression of the disease and can have side effects. Thus, new treatment options are needed to supplement the effects of lipid lowering therapy for treating atherosclerosis. We examined the use of an inexpensive and widely available marine polysaccharide rhamnan sulfate as an oral therapeutic for limiting vascular inflammation and atherosclerosis. METHODS AND RESULTS: We found rhamnan sulfate enhanced the barrier function of endothelial cells, preventing the deposition of LDL and maintaining barrier function even in the presence of glycocalyx-degrading enzymes. Rhamnan sulfate was also found to bind directly to FGF-2, PDGF-BB and NF-κB subunits with high affinity. In addition, rhamnan sulfate was a potent inhibitor of NF-κB pathway activation in endothelial cells by TNF-α. We treated ApoE-/- mice with a high fat diet for 4 weeks and then an addition 9 weeks of high fat diet with or without rhamnan sulfate. Rhamnan sulfate reduced vascular inflammation and atherosclerosis in both sexes of ApoE-/- mice but had a stronger therapeutic effect in female mice. Oral consumption of rhamnan sulfate induced a significant decrease in cholesterol plasma levels in female mice but not in male mice. In addition, there was a marked reduction in inflammation for female mice in the liver and aortic root in comparison to male mice. CONCLUSIONS: Rhamnan sulfate has beneficial effects in reducing inflammation, binding growth factors and NF-κB, enhancing endothelial barrier function and reducing atherosclerotic plaque formation in ApoE-/- mice.


Assuntos
Aterosclerose , Placa Aterosclerótica , Masculino , Feminino , Camundongos , Animais , Placa Aterosclerótica/tratamento farmacológico , NF-kappa B/metabolismo , Células Endoteliais/metabolismo , Sulfatos , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Apolipoproteínas E/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA