Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 862: 172627, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31461638

RESUMO

Isorhapontigenin is a polyphenolic compound found in Chinese herbs and grapes. It is a methoxylated analogue of a stilbenoid, resveratrol, which is well-known for its various beneficial effects including anti-platelet activity. Isorhapontigenin possesses greater oral bioavailability than resveratrol and has also been identified to possess anti-cancer and anti-inflammatory properties. However, its effects on platelet function have not been reported previously. In this study, we report the effects of isorhapontigenin on the modulation of platelet function. Isorhapontigenin was found to selectively inhibit ADP-induced platelet aggregation with an IC50 of 1.85 µM although it displayed marginal inhibition on platelet aggregation induced by other platelet agonists at 100 µM. However, resveratrol exhibited weaker inhibition on ADP-induced platelet aggregation (IC50 > 100 µM) but inhibited collagen induced platelet aggregation at 50 µM and 100 µM. Isorhapontigenin also inhibited integrin αIIbß3 mediated inside-out and outside-in signalling and dense granule secretion in ADP-induced platelet activation but interestingly, no effect was observed on α-granule secretion. Isorhapontigenin did not exert any cytotoxicity on platelets at the concentrations of up to 100 µM. Furthermore, it did not affect haemostasis in mice at the IC50 concentration (1.85 µM). In addition, the mechanistic studies demonstrated that isorhapontigenin increased cAMP levels and VASP phosphorylation at Ser157 and decreased Akt phosphorylation. This suggests that isorhapontigenin may interfere with cAMP and PI3K signalling pathways that are associated with the P2Y12 receptor. Molecular docking studies emphasised that isorhapontigenin has greater binding affinity to P2Y12 receptor than resveratrol. Our results demonstrate that isorhapontigenin has selective inhibitory effects on ADP-stimulated platelet activation possibly via P2Y12 receptor.


Assuntos
Plaquetas/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Estilbenos/farmacologia , Difosfato de Adenosina/farmacologia , Animais , Plaquetas/metabolismo , Avaliação Pré-Clínica de Medicamentos , Feminino , Voluntários Saudáveis , Humanos , Concentração Inibidora 50 , Masculino , Camundongos , Modelos Animais , Simulação de Acoplamento Molecular , Inibidores da Agregação Plaquetária/uso terapêutico , Testes de Função Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/antagonistas & inibidores , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Receptores Purinérgicos P2Y12/química , Receptores Purinérgicos P2Y12/metabolismo , Resveratrol/análogos & derivados , Resveratrol/farmacologia , Transdução de Sinais/efeitos dos fármacos , Estilbenos/química , Estilbenos/uso terapêutico , Trombose/tratamento farmacológico
2.
Epilepsy Behav ; 70(Pt B): 319-327, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28190698

RESUMO

The isolation and identification of the discrete plant cannabinoids in marijuana revived interest in analyzing historical therapeutic claims made for cannabis in clinical case studies and anecdotes. In particular, sources as old as the 11th and 15th centuries claimed efficacy for crude marijuana extracts in the treatment of convulsive disorders, prompting a particularly active area of preclinical research into the therapeutic potential of plant cannabinoids in epilepsy. Since that time, a large body of literature has accumulated describing the effects of several of the >100 individual plant cannabinoids in preclinical models of seizures, epilepsy, epileptogenesis, and epilepsy-related neuroprotection. We surveyed the literature for relevant reports of such plant cannabinoid effects and critically reviewed their findings. We found that acute CB1R agonism in simple models of acute seizures in rodents typically produces anti-convulsant effects whereas CB1R antagonists exert converse effects in the same models. However, when the effects of such ligands are examined in more complex models of epilepsy, epileptogenesis and neuroprotection, a less simplistic narrative emerges. Here, the complex interactions between (i) brain regions involved in a given model, (ii) relative contributions of endocannabinoid signaling to modulation of synaptic transmission in such areas, (iii) multi-target effects, (iv) cannabinoid type 1 and type 2 receptor signaling interactions and, (v) timing, (vi) duration and (vii) localization of ligand administration suggest that there is both anti-epileptic therapeutic potential and a pro-epileptic risk in up- and down-regulation of endocannabinoid signaling in the central nervous system. Factors such receptor desensitization and specific pharmacology of ligands used (e.g. full vs partial agonists and neutral antagonists vs inverse agonists) also appear to play an important role in the effects reported. Furthermore, the effects of several plant cannabinoids, most notably cannabidiol (CBD) and cannabidavarin (CBDV), in models of seizures, epilepsy, epileptogenesis, and neuroprotection are less ambiguous, and consistent with reports of therapeutically beneficial effects of these compounds in clinical studies. However, continued paucity of firm information regarding the therapeutic molecular mechanism of CBD/CBDV highlights the continued need for research in this area in order to identify as yet under-exploited targets for drug development and raise our understanding of treatment-resistant epilepsies. The recent reporting of positive results for cannabidiol treatment in two Phase III clinical trials in treatment-resistant epilepsies provides pivotal evidence of clinical efficacy for one plant cannabinoid in epilepsy. Moreover, risks and/or benefits associated with the use of unlicensed Δ9-THC containing marijuana extracts in pediatric epilepsies remain poorly understood. Therefore, in light of these paradigm-changing clinical events, the present review's findings aim to drive future drug development for newly-identified targets and indications, identify important limitations of animal models in the investigation of plant cannabinoid effects in the epilepsies, and focuses future research in this area on specific, unanswered questions regarding the complexities of endocannabinoid signaling in epilepsy. This article is part of a Special Issue titled Cannabinoids and Epilepsy.


Assuntos
Anticonvulsivantes/uso terapêutico , Canabinoides/uso terapêutico , Modelos Animais de Doenças , Epilepsia/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Convulsões/tratamento farmacológico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Canabidiol/uso terapêutico , Cannabis , Dronabinol/uso terapêutico , Combinação de Medicamentos , Epilepsia/fisiopatologia , Humanos , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Convulsões/fisiopatologia
3.
Asian Pac J Trop Med ; 6(4): 315-9, 2013 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-23608335

RESUMO

OBJECTIVE: To evaluate the antimicrobial efficacy of berberine, a plant alkaloid. METHODS: Five multi-drug resistant (MDR) STEC/EPEC and five MDR ETEC isolates from yaks with haemorrhagic diarrhoea were selected for the study. Antibacterial activity of berberine was evaluated by broth dilution and disc diffusion methods. The binding kinetics of berberine to DNA and protein was also enumerated. RESULTS: For both categories of enterovirulent Escherichia coli (E. coli) isolates, berberine displayed the antibacterial effect in a dose dependent manner. The MIC(50) of berberine chloride for STEC/EPEC isolates varied from 2.07 µM to 3.6 µM with a mean of (2.95 ± 0.33) µM where as for ETEC strains it varied from 1.75 to 1.96 µM with a mean of (1.87 ± 0.03) µM. Berberine bind more tightly with double helix DNA with Bmax and Kd of (24.68±2.62) and (357.8±57.8), respectively. Berberine reacted with protein in comparatively loose manner with Bmax and Kd of (18.9±3.83) and (286.2±113.6), respectively. CONCLUSIONS: The results indicate clearly that berberine may serve as a good antibacterial against multi drug resistant E. coli.


Assuntos
Antibacterianos/uso terapêutico , Berberina/uso terapêutico , Doenças dos Bovinos/tratamento farmacológico , Diarreia/tratamento farmacológico , Infecções por Escherichia coli/tratamento farmacológico , Animais , Berberina/metabolismo , Bovinos , DNA Bacteriano/metabolismo , Diarreia/veterinária , Farmacorresistência Bacteriana Múltipla , Escherichia coli Enteropatogênica , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli/veterinária , Testes de Sensibilidade Microbiana , Ligação Proteica , Escherichia coli Shiga Toxigênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA