Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 65(2): 301-318, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38190549

RESUMO

Pectin methylesterases (PMEs) modify homogalacturonan's chemistry and play a key role in regulating primary cell wall mechanical properties. Here, we report on Arabidopsis AtPME2, which we found to be highly expressed during lateral root emergence and dark-grown hypocotyl elongation. We showed that dark-grown hypocotyl elongation was reduced in knock-out mutant lines as compared to the control. The latter was related to the decreased total PME activity as well as increased stiffness of the cell wall in the apical part of the hypocotyl. To relate phenotypic analyses to the biochemical specificity of the enzyme, we produced the mature active enzyme using heterologous expression in Pichia pastoris and characterized it through the use of a generic plant PME antiserum. AtPME2 is more active at neutral compared to acidic pH, on pectins with a degree of 55-70% methylesterification. We further showed that the mode of action of AtPME2 can vary according to pH, from high processivity (at pH8) to low processivity (at pH5), and relate these observations to the differences in electrostatic potential of the protein. Our study brings insights into how the pH-dependent regulation by PME activity could affect the pectin structure and associated cell wall mechanical properties.


Assuntos
Arabidopsis , Hidrolases de Éster Carboxílico , Hipocótilo , Hipocótilo/genética , Hipocótilo/metabolismo , Arabidopsis/metabolismo , Parede Celular/metabolismo , Mutação/genética , Pectinas/metabolismo , Concentração de Íons de Hidrogênio
2.
Plant Cell ; 35(8): 3073-3091, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37202370

RESUMO

Polygalacturonases (PGs) fine-tune pectins to modulate cell wall chemistry and mechanics, impacting plant development. The large number of PGs encoded in plant genomes leads to questions on the diversity and specificity of distinct isozymes. Herein, we report the crystal structures of 2 Arabidopsis thaliana PGs, POLYGALACTURONASE LATERAL ROOT (PGLR), and ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE2 (ADPG2), which are coexpressed during root development. We first determined the amino acid variations and steric clashes that explain the absence of inhibition of the plant PGs by endogenous PG-inhibiting proteins (PGIPs). Although their beta helix folds are highly similar, PGLR and ADPG2 subsites in the substrate binding groove are occupied by divergent amino acids. By combining molecular dynamic simulations, analysis of enzyme kinetics, and hydrolysis products, we showed that these structural differences translated into distinct enzyme-substrate dynamics and enzyme processivities: ADPG2 showed greater substrate fluctuations with hydrolysis products, oligogalacturonides (OGs), with a degree of polymerization (DP) of ≤4, while the DP of OGs generated by PGLR was between 5 and 9. Using the Arabidopsis root as a developmental model, exogenous application of purified enzymes showed that the highly processive ADPG2 had major effects on both root cell elongation and cell adhesion. This work highlights the importance of PG processivity on pectin degradation regulating plant development.


Assuntos
Arabidopsis , Poligalacturonase , Poligalacturonase/genética , Poligalacturonase/metabolismo , Arabidopsis/metabolismo , Pectinas/metabolismo , Proteínas/metabolismo , Parede Celular/metabolismo
3.
Mol Plant ; 16(5): 865-881, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37002606

RESUMO

Most organisms adjust their development according to the environmental conditions. For the majority, this implies the sensing of alterations to cell walls caused by different cues. Despite the relevance of this process, few molecular players involved in cell wall sensing are known and characterized. Here, we show that the wall-associated kinase-like protein RESISTANCE TO FUSARIUM OXYSPORUM 1 (RFO1) is required for plant growth and early defense against Fusarium oxysporum and functions by sensing changes in the pectin methylation levels in the cell wall. The RFO1 dwell time at the plasma membrane is affected by the pectin methylation status at the cell wall, regulating MITOGEN-ACTIVATED PROTEIN KINASE and gene expression. We show that the extracellular domain of RFO1 binds de-methylated pectin in vitro, whose distribution in the cell wall is altered during F. oxysporum infection. Further analyses also indicate that RFO1 is required for the BR-dependent plant growth alteration in response to inhibition of pectin de-methyl-esterase activity at the cell wall. Collectively, our work demonstrates that RFO1 is a sensor of the pectin methylation status that plays a unique dual role in plant growth and defense against vascular pathogens.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fusarium , Pectinas , Imunidade Vegetal , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Metilação , Pectinas/metabolismo , Proteínas Quinases/metabolismo , Fusarium/imunologia
4.
Int J Biol Macromol ; 231: 123137, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36639075

RESUMO

Pectins, complex polysaccharides and major components of the plant primary cell wall, can be degraded by pectate lyases (PLs). PLs cleave glycosidic bonds of homogalacturonans (HG), the main pectic domain, by ß-elimination, releasing unsaturated oligogalacturonides (OGs). To understand the catalytic mechanism and structure/function of these enzymes, we characterized VdPelB from Verticillium dahliae. We first solved the crystal structure of VdPelB at 1.2 Å resolution showing that it is a right-handed parallel ß-helix structure. Molecular dynamics (MD) simulations further highlighted the dynamics of the enzyme in complex with substrates that vary in their degree of methylesterification, identifying amino acids involved in substrate binding and cleavage of non-methylesterified pectins. We then biochemically characterized wild type and mutated forms of VdPelB. Pectate lyase VdPelB was most active on non-methylesterified pectins, at pH 8.0 in presence of Ca2+ ions. The VdPelB-G125R mutant was most active at pH 9.0 and showed higher relative activity compared to native enzyme. The OGs released by VdPelB differed to that of previously characterized PLs, showing its peculiar specificity in relation to its structure. OGs released from Verticillium-partially tolerant and sensitive flax cultivars differed which could facilitate the identification VdPelB-mediated elicitors of defence responses.


Assuntos
Simulação de Dinâmica Molecular , Polissacarídeo-Liases , Polissacarídeo-Liases/química , Glicosídeos , Pectinas/química , Especificidade por Substrato
5.
Carbohydr Polym ; 262: 117943, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33838820

RESUMO

Aspergillus spp. are well-known producers of pectinases commonly used in the industry. Aspergillus aculeatinus is a recently identified species but poorly characterized. This study aimed at giving a comprehensive characterization of the enzymatic potential of the O822 strain to produce Rhamnogalacturonan type I (RGI)-degrading enzymes. Proteomic analysis identified cell wall degrading enzymes (cellulases, hemicellulases, and pectinases) that accounted for 92 % of total secreted proteins. Twelve out of fifty proteins were identified as RGI-degrading enzymes. NMR and enzymatic assays revealed high levels of arabinofuranosidase, arabinanase, galactanase, rhamnogalacturonan hydrolases and rhamnogalacturonan acetylesterase activities in aqueous extracts. Viscosity assays carried out with RGI-rich camelina mucilage confirmed the efficiency of enzymes secreted by O822 to hydrolyze RGI, by decreasing viscosity by 70 %. Apple juice trials carried out at laboratory and pilot scale showed an increase in filtration flow rate and yield, paving the way for an industrial use of enzymes derived from A. aculeatinus.


Assuntos
Aspergillus/enzimologia , Filtração/métodos , Sucos de Frutas e Vegetais , Proteínas Fúngicas/metabolismo , Ramnogalacturonanos/metabolismo , Metabolismo dos Carboidratos , Celulases/metabolismo , Manipulação de Alimentos/métodos , Glicosídeo Hidrolases/metabolismo , Hidrolases/metabolismo , Malus , Pectinas/metabolismo , Poligalacturonase/metabolismo , Proteômica
6.
Int J Biol Macromol ; 176: 165-176, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33561463

RESUMO

Pectin, the major non-cellulosic component of primary cell wall can be degraded by polygalacturonases (PGs) and pectin methylesterases (PMEs) during pathogen attack on plants. We characterized two novel enzymes, VdPG2 and VdPME1, from the fungal plant pathogen Verticillium dahliae. VdPME1 was most active on citrus methylesterified pectin (55-70%) at pH 6 and a temperature of 40 °C, while VdPG2 was most active on polygalacturonic acid at pH 5 and a temperature of 50 °C. Using LC-MS/MS oligoprofiling, and various pectins, the mode of action of VdPME1 and VdPG2 were determined. VdPME1 was shown to be processive, in accordance with the electrostatic potential of the enzyme. VdPG2 was identified as endo-PG releasing both methylesterified and non-methylesterified oligogalacturonides (OGs). Additionally, when flax roots were used as substrate, acetylated OGs were detected. The comparisons of OGs released from Verticillium-susceptible and partially resistant flax cultivars identified new possible elicitor of plant defence responses.


Assuntos
Ascomicetos/enzimologia , Hidrolases de Éster Carboxílico/metabolismo , Proteínas Fúngicas/metabolismo , Poligalacturonase/metabolismo , Ascomicetos/genética , Ascomicetos/patogenicidade , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/genética , Linho/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Cinética , Modelos Moleculares , Pectinas/metabolismo , Filogenia , Doenças das Plantas/microbiologia , Raízes de Plantas/metabolismo , Poligalacturonase/química , Poligalacturonase/genética , Eletricidade Estática , Especificidade por Substrato
7.
Carbohydr Polym ; 248: 116752, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32919555

RESUMO

Rhamnogalaturonans I (RGI) pectins, which are a major component of the plant primary cell wall, can be recalcitrant to digestion by commercial enzymatic cocktails, in particular during fruit juice clarification process. To overcome these problems and get better insights into RGI degradation, three RGI degrading enzymes (RHG: Endo-rhamnogalacturonase; ABF: α-Arabinofuranosidases; GAN: Endo-ß-1,4-galactanase) from Aspergillus aculeatinus were expressed in Pichia pastoris, purified and fully biochemically characterized. All three enzymes showed acidic pH optimum, and temperature optima between 40-50 °C. The Km values were 0.5 mg.ml-1, 1.64 mg.ml-1 and 3.72 mg.ml-1 for RHG, ABF, GAN, respectively. NMR analysis confirmed an endo-acting mode of action for RHG and GAN, and exo-acting mode for ABF. The application potential of these enzymes was assessed by measuring changes in viscosity of RGI-rich camelina mucilage, showing that RHG-GAN enzymes induced a decrease in viscosity by altering the structures of the RGI backbone and sidechains.


Assuntos
Aspergillus/enzimologia , Proteínas Fúngicas/metabolismo , Pectinas/metabolismo , Aspergillus/genética , Aspergillus/metabolismo , Parede Celular/química , Estabilidade Enzimática , Proteínas Fúngicas/genética , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Ressonância Magnética , Pichia/genética , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/metabolismo , Proteínas Recombinantes/metabolismo , Temperatura
8.
Proc Natl Acad Sci U S A ; 116(39): 19743-19752, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31501325

RESUMO

Despite an ever-increasing interest for the use of pectin-derived oligogalacturonides (OGs) as biological control agents in agriculture, very little information exists-mainly for technical reasons-on the nature and activity of the OGs that accumulate during pathogen infection. Here we developed a sensitive OG profiling method, which revealed unsuspected features of the OGs generated during infection of Arabidopsis thaliana with the fungus Botrytis cinerea Indeed, in contrast to previous reports, most OGs were acetyl- and methylesterified, and 80% of them were produced by fungal pectin lyases, not by polygalacturonases. Polygalacturonase products did not accumulate as larger size OGs but were converted into oxidized GalA dimers. Finally, the comparison of the OGs and transcriptomes of leaves infected with B. cinerea mutants with reduced pectinolytic activity but with decreased or increased virulence, respectively, identified candidate OG elicitors. In conclusion, OG analysis provides insights into the enzymatic arms race between plant and pathogen and facilitates the identification of defense elicitors.


Assuntos
Arabidopsis/metabolismo , Botrytis/patogenicidade , Ácidos Hexurônicos/metabolismo , Proteínas de Arabidopsis/metabolismo , Botrytis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Pectinas/metabolismo , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo , Poligalacturonase/metabolismo , Transdução de Sinais
9.
Int J Biol Macromol ; 81: 681-91, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26342461

RESUMO

Pectin methylesterases (PMEs) play a central role in pectin remodeling during plant development. They are also present in phytopathogens such as bacteria and fungi. We investigated the substrate specificity and pH dependence of plant and fungi PMEs using tailor-made pectic substrates. For this purpose, we used two plant PMEs (from orange peel: Citrus sinensis and from Arabidopsis thaliana) and one fungal PME (from Botrytis cinerea). We showed that plant and fungi PMEs differed in their substrate specificity and pH dependence, and that there were some differences between plant PMEs. We further investigated the inhibition of these enzyme activities using characterized polyphenols such as catechins and tannic acid. We showed that PMEs differed in their sensitivity to chemical compounds. In particular, fungal PME was not sensitive to inhibition. Finally, we screened for novel chemical inhibitors of PMEs using a chemical library of ∼3600 compounds. We identified a hundred new inhibitors of plant PMEs, but none had an effect on the fungal enzyme. This study sheds new light on the specificity of pectin methylesterases and provides new tools to modulate their activity.


Assuntos
Hidrolases de Éster Carboxílico/química , Fungos/enzimologia , Plantas/enzimologia , Sequência de Aminoácidos , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Hidrolases de Éster Carboxílico/isolamento & purificação , Hidrolases de Éster Carboxílico/metabolismo , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Polifenóis/farmacologia , Alinhamento de Sequência , Bibliotecas de Moléculas Pequenas , Especificidade por Substrato
10.
J Plant Physiol ; 171(1): 55-64, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23998915

RESUMO

Flax (Linum usitatissimum) is grown for its oil and its fiber. This crop, cultivated in temperate regions, has seen a renewed interest due to the presence of abundant molecules of interest for many applications. Little information is available about the behavior of flax during osmotic stress; yet this is considered a major stress that causes significant yield losses in most crops. To control the presence of this stress better, flax behavior was investigated following the application of osmotic stress and the response was examined by applying increasing concentrations of PEG 8000. This resulted in the reorganization of 32 metabolites and 6 mineral ions in the leaves. The analysis of these two types of solute highlighted the contrasting behavior between a higher metabolite content (particularly fructose, glucose and proline) and a decrease in mineral ions (especially nitrate and potassium) following PEG treatment. However, this reorganization did not lead to a greater accumulation of solutes, with the total amount remaining unchanged in leaves during osmotic stress.


Assuntos
Linho/fisiologia , Extratos Vegetais/química , Linho/química , Cromatografia Gasosa-Espectrometria de Massas , Metabolômica , Pressão Osmótica , Filogenia , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Folhas de Planta/fisiologia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA