Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Scand J Med Sci Sports ; 31(9): 1764-1773, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33908091

RESUMO

The present study explored the impact of pre-altitude serum (s)-ferritin and iron supplementation on changes in hemoglobin mass (ΔHbmass) following altitude training. Measures of Hbmass and s-ferritin from 107 altitude sojourns (9-28 days at 1800-2500 m) with world-class endurance athletes (males n = 41, females n = 25) were analyzed together with iron supplementation and self-reported illness. Altitude sojourns with a hypoxic dose [median (range)] of 1169 (912) km·h increased Hbmass (mean ± SD) 36 ± 38 g (3.7 ± 3.7%, p < 0.001) and decreased s-ferritin -11 (190) µg·L-1 (p = 0.001). Iron supplements [27 (191) mg·day-1 ] were used at 45 sojourns (42%), while only 11 sojourns (10%) were commenced with s-ferritin <35 µg/L. Hbmass increased by 4.6 ± 3.7%, 3.4 ± 3.3%, 4.2 ± 4.3%, and 2.9 ± 3.4% with pre-altitude s-ferritin ≤35 µg·L-1 , 36-50 µg·L-1 , 51-100 µg·L-1 , and >100 µg·L-1 , respectively, with no group difference (p = 0.400). Hbmass increased by 4.1 ± 3.9%, 3.0 ± 3.0% and 3.7 ± 4.7% without, ≤50 mg·day-1 or >50 mg·day-1 supplemental iron, respectively (p = 0.399). Linear mixed model analysis revealed no interaction between pre-altitude s-ferritin and iron supplementation on ΔHbmass (p = 0.906). However, each 100 km·h increase in hypoxic dose augmented ΔHbmass by an additional 0.4% (95% CI: 0.1-0.7%; p = 0.012), while each 1 g·kg-1 higher pre-altitude Hbmass reduced ΔHbmass by -1% (-1.6 to -0.5; p < 0.001), and illness lowered ΔHbmass by -5.7% (-8.3 to -3.1%; p < 0.001). In conclusion, pre-altitude s-ferritin or iron supplementation were not related to the altitude-induced increase in Hbmass (3.7%) in world-class endurance athletes with clinically normal iron stores.


Assuntos
Altitude , Atletas , Eritropoese/fisiologia , Ferritinas/sangue , Hemoglobina A/metabolismo , Ferro/administração & dosagem , Adulto , Feminino , Humanos , Hipóxia/sangue , Ferro/metabolismo , Masculino , Consumo de Oxigênio/fisiologia , Condicionamento Físico Humano/métodos , Condicionamento Físico Humano/fisiologia , Resistência Física/fisiologia , Estudos Retrospectivos , Fatores de Tempo , Adulto Jovem
2.
J Int Soc Sports Nutr ; 14: 43, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29200982

RESUMO

BACKGROUND: Protein intake is essential to maximally stimulate muscle protein synthesis, and the amino acid leucine seems to possess a superior effect on muscle protein synthesis compared to other amino acids. Native whey has higher leucine content and thus a potentially greater anabolic effect on muscle than regular whey (WPC-80). This study compared the acute anabolic effects of ingesting 2 × 20 g of native whey protein, WPC-80 or milk protein after a resistance exercise session. METHODS: A total of 24 young resistance trained men and women took part in this double blind, randomized, partial crossover, controlled study. Participants received either WPC-80 and native whey (n = 10), in a crossover design, or milk (n = 12). Supplements were ingested immediately (20 g) and two hours after (20 g) a bout of heavy-load lower body resistance exercise. Blood samples and muscle biopsies were collected to measure plasma concentrations of amino acids by gas-chromatography mass spectrometry, muscle phosphorylation of p70S6K, 4E-BP1 and eEF-2 by immunoblotting, and mixed muscle protein synthesis by use of [2H5]phenylalanine-infusion, gas-chromatography mass spectrometry and isotope-ratio mass spectrometry. Being the main comparison, differences between native whey and WPC-80 were analysed by a one-way ANOVA and comparisons between the whey supplements and milk were analysed by a two-way ANOVA. RESULTS: Native whey increased blood leucine concentrations more than WPC-80 and milk (P < 0.05). Native whey ingestion induced a greater phosphorylation of p70S6K than milk 180 min after exercise (P = 0.03). Muscle protein synthesis rates increased 1-3 h hours after exercise with WPC-80 (0.119%), and 1-5 h after exercise with native whey (0.112%). Muscle protein synthesis rates were higher 1-5 h after exercise with native whey than with milk (0.112% vs. 0.064, P = 0.023). CONCLUSIONS: Despite higher-magnitude increases in blood leucine concentrations with native whey, it was not superior to WPC-80 concerning effect on muscle protein synthesis and phosphorylation of p70S6K during a 5-h post-exercise period. Native whey increased phosphorylation of p70S6K and muscle protein synthesis rates to a greater extent than milk during the 5-h post exercise period. TRIAL REGISTRATION: This study was retrospectively registered at clinicaltrials.gov as NCT02968888.


Assuntos
Suplementos Nutricionais , Leucina/análise , Músculo Esquelético/efeitos dos fármacos , Treinamento Resistido , Fenômenos Fisiológicos da Nutrição Esportiva , Proteínas do Soro do Leite/química , Proteínas do Soro do Leite/farmacologia , Estudos Cross-Over , Método Duplo-Cego , Feminino , Voluntários Saudáveis , Humanos , Leucina/farmacologia , Masculino , Proteínas Musculares/biossíntese , Músculo Esquelético/fisiologia , Biossíntese de Proteínas/efeitos dos fármacos , Adulto Jovem
3.
Eur J Appl Physiol ; 117(6): 1073-1084, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28382551

RESUMO

PURPOSE: Resistance training is beneficial for maintaining bone mass. We aimed to investigate the skeletal effects of high doses of antioxidants [vitamin C + E (α-tocopherol)] supplementation during 12-week supervised strength training in healthy, elderly men METHODS: Design: double-blinded randomized placebo-controlled study. Participants followed a supervised, undulating periodic exercise program with weekly adjusted load: 3 sessions/week and 3-15 repetitions maximum (RM) sets/exercise. The control group (CG, n = 17, 67 ± 5 years) received placebo and the antioxidant group (AO, n = 16, 70 ± 7 years) 1000 mg vitamin C + 235 mg vitamin E, daily. Areal bone mineral density (aBMD) at whole body, lumbar spine (L1-L4), total hip, and femoral neck were measured by dual energy X-ray absorptiometry and muscle strength by 1RM. Serum analyses of bone-related factors and adipokines were performed. RESULTS: In the CG, total hip aBMD increased by 1.0% (CI: 0.3-1.7) versus pretest and lumbar spine aBMD increased by 0.9% (CI: -0.2 to 2.0) compared to the AO. In the CG, there was an increase in serum concentrations of insulin-like growth factor 1 [+27.3% (CI: -0.3 to 54.9)] and leptin [+31.2% (CI: 9.8-52.6)) versus pretest, and a decrease in sclerostin [-9.9% (CI: 4.4-15.3)] versus pretest and versus AO. Serum bone formation markers P1NP and osteocalcin increased in both groups, while the bone resorption marker CTX-1 remained unchanged. CONCLUSION: High doses of antioxidant supplementations may constrain the favorable skeletal benefits of 12 weeks of resistance exercise in healthy elderly men.


Assuntos
Ácido Ascórbico/farmacologia , Densidade Óssea , Treinamento Resistido , Vitamina E/farmacologia , Vitaminas/farmacologia , Idoso , Ácido Ascórbico/administração & dosagem , Desenvolvimento Ósseo , Osso e Ossos/efeitos dos fármacos , Método Duplo-Cego , Humanos , Masculino , Pessoa de Meia-Idade , Vitamina E/administração & dosagem , Vitaminas/administração & dosagem
4.
Ann Nutr Metab ; 68(2): 145-55, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26848570

RESUMO

BACKGROUND: Data on redox plasma aminothiol status in individuals on strength training are very limited. Therefore, we studied the effect of omega-3 and vitamins E + C supplementation on the concentration of B-vitamins and redox aminothiol status in elderly men after strength training for 3 months. METHODS: Healthy men, age 60 ± 6 (mean ± SD) were randomly divided into 3 groups: group I received placebo (n = 17), group II consumed omega-3 (700 mg, n = 17), and group III consumed vitamins E + C (235 mg +1 g, n = 16) daily for 3 months. All participants completed a strength training program for the same period. RESULTS: The concentration of serum vitamin B12 decreased and the concentration of serum folate increased in group I after the intervention (p = 0.01, p = 0.009). The concentration of plasma 5-pyridoxal phosphate decreased in groups II and III (p = 0.03 and p = 0.01), whereas the concentration of serum uric acid decreased only in group II (p = 0.02). We detected an increase in the concentration of reduced form of aminothiols in all groups (p < 0.001). The red/ox plasma aminothiol status was significantly changed in all groups after the intervention (p < 0.05). CONCLUSION: Omega-3 and vitamins E + C supplementation affect the concentrations of serum B-vitamins and redox plasma aminothiol status in healthy elderly men on strength training.


Assuntos
Antioxidantes/análise , Ácido Ascórbico/farmacologia , Ácidos Graxos Ômega-3/farmacologia , Treinamento Resistido , Compostos de Sulfidrila/sangue , Complexo Vitamínico B/sangue , Vitamina E/farmacologia , Vitaminas/farmacologia , Idoso , Suplementos Nutricionais , Ácido Fólico/sangue , Humanos , Masculino , Pessoa de Meia-Idade , Piridoxal/sangue , Ácido Úrico/sangue , Vitamina B 12/sangue
5.
Physiol Rep ; 2(10)2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25293598

RESUMO

Reactive oxygen and nitrogen species are important signal molecules for adaptations to training. Due to the antioxidant properties of vitamin C and E, supplementation has been shown to blunt adaptations to endurance training. In this study, we investigated the effects of vitamin C and E supplementation and endurance training on adaptations in endogenous antioxidants and heat shock proteins (HSP). Thirty seven males and females were randomly assigned to receive Vitamin C and E (C + E; C: 1000 mg, E: 235 mg daily) or placebo (PLA), and underwent endurance training for 11 weeks. After 5 weeks, a subgroup conducted a high intensity interval session to investigate acute stress responses. Muscle and blood samples were obtained to investigate changes in proteins and mRNA related to the antioxidant and HSP system. The acute response to the interval session revealed no effects of C + E supplementation on NFκB activation. However, higher stress responses to exercise in C + E group was indicated by larger translocation of HSPs and a more pronounced gene expression compared to PLA. Eleven weeks of endurance training decreased muscle GPx1, HSP27 and αB-crystallin, while mnSOD, HSP70 and GSH remained unchanged, with no influence of supplementation. Plasma GSH increased in both groups, while uric acid decreased in the C + E group only. Our results showed that C + E did not affect long-term training adaptations in the antioxidant- and HSP systems. However, the greater stress responses to exercise in the C + E group might indicate that long-term adaptations occurs through different mechanisms in the two groups.

6.
Artigo em Inglês | MEDLINE | ID: mdl-25075311

RESUMO

BACKGROUND: Antioxidant supplementation has recently been demonstrated to be a double-edged sword, because small to moderate doses of exogenous antioxidants are essential or beneficial, while high doses may have adverse effects. The adverse effects can be manifested in attenuated effects of exercise and training, as the antioxidants may shut down some redox-sensitive signaling in the exercised muscle fibers. However, conditions such as age may potentially modulate the need for antioxidant intake. Therefore, this paper describes experiments for testing the hypothesis that high dosages of vitamin C (1000 mg/day) and E (235 mg/day) have negative effects on adaptation to resistance exercise and training in young volunteers, but positive effects in older men. METHODS/DESIGN: We recruited a total of 73 volunteers. The participants were randomly assigned to receiving either vitamin C and E supplementation or a placebo. The study design was double-blinded, and the participants followed an intensive training program for 10-12 weeks. Tests and measurements aimed at assessing changes in physical performance (maximal strength) and physiological characteristics (muscle mass), as well as biochemical and cellular systems and structures (e.g., cell signaling and morphology). DISCUSSION: Dietary supplements, such as vitamin C and E, are used by many people, especially athletes. The users often believe that high dosages of supplements improve health (resistance to illness and disease) and physical performance. These assumptions are, however, generally not supported in the scientific literature. On the contrary, some studies have indicated that high dosages of antioxidant supplements have negative effects on exercise-induced adaptation processes. Since this issue concerns many people and few randomized controlled trials have been conducted in humans, further studies are highly warranted. TRIAL REGISTRATION: ACTRN12614000065695.

7.
J Physiol ; 592(8): 1887-901, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24492839

RESUMO

In this double-blind, randomised, controlled trial, we investigated the effects of vitamin C and E supplementation on endurance training adaptations in humans. Fifty-four young men and women were randomly allocated to receive either 1000 mg of vitamin C and 235 mg of vitamin E or a placebo daily for 11 weeks. During supplementation, the participants completed an endurance training programme consisting of three to four sessions per week (primarily of running), divided into high-intensity interval sessions [4-6 × 4-6 min; >90% of maximal heart rate (HRmax)] and steady state continuous sessions (30-60 min; 70-90% of HRmax). Maximal oxygen uptake (VO2 max ), submaximal running and a 20 m shuttle run test were assessed and blood samples and muscle biopsies were collected, before and after the intervention. Participants in the vitamin C and E group increased their VO2 max (mean ± s.d.: 8 ± 5%) and performance in the 20 m shuttle test (10 ± 11%) to the same degree as those in the placebo group (mean ± s.d.: 8 ± 5% and 14 ± 17%, respectively). However, the mitochondrial marker cytochrome c oxidase subunit IV (COX4) and cytosolic peroxisome proliferator-activated receptor-γ coactivator 1 α (PGC-1α) increased in the m. vastus lateralis in the placebo group by 59 ± 97% and 19 ± 51%, respectively, but not in the vitamin C and E group (COX4: -13 ± 54%; PGC-1α: -13 ± 29%; P ≤ 0.03, between groups). Furthermore, mRNA levels of CDC42 and mitogen-activated protein kinase 1 (MAPK1) in the trained muscle were lower in the vitamin C and E group than in the placebo group (P ≤ 0.05). Daily vitamin C and E supplementation attenuated increases in markers of mitochondrial biogenesis following endurance training. However, no clear interactions were detected for improvements in VO2 max and running performance. Consequently, vitamin C and E supplementation hampered cellular adaptations in the exercised muscles, and although this did not translate to the performance tests applied in this study, we advocate caution when considering antioxidant supplementation combined with endurance exercise.


Assuntos
Ácido Ascórbico/farmacologia , Exercício Físico , Consumo de Oxigênio/efeitos dos fármacos , Resistência Física/efeitos dos fármacos , Vitamina E/farmacologia , Vitaminas/farmacologia , Adaptação Fisiológica , Adulto , Ácido Ascórbico/administração & dosagem , Suplementos Nutricionais , Método Duplo-Cego , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Humanos , Masculino , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vitamina E/administração & dosagem , Vitaminas/administração & dosagem , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA