Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 8, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38085380

RESUMO

BACKGROUND: Vitamin D is an immunomodulator, and its effects have been linked to many diseases, including the pathogenesis of cancer. However, the effect of vitamin D supplementation on the regulation of gene expression of the lungs is not fully understood. This study aims to determine the effect of the increased dose of cholecalciferol and a combination of cholecalciferol + calcidiol, as well as the replacement of cholecalciferol with calcidiol, on the miRNA profile of healthy swine lungs. METHODS AND RESULTS: The swine were long-term (88 days) supplemented with a standard dose (2000IU/kg) of cholecalciferol and calcidiol, the increased dose (3000 IU/kg) of cholecalciferol, and the cholecalciferol + calcidiol combination: grower: 3000 IU/Kg of vitamin D (67% of cholecalciferol and 33% of calcidiol), finisher 2500 IU/Kg of vitamin D (60% of cholecalciferol and 40% of calcidiol). Swine lung tissue was used for Next Generation Sequencing (NGS) of miRNA. Long-term supplementation with the cholecalciferol + calcidiol combination caused significant changes in the miRNA profile. They embraced altered levels of the expression of miR-150, miR-193, miR-145, miR-574, miR-340, miR-381, miR-148 and miR-96 (q-value < 0.05). In contrast, raising the dose of cholecalciferol only changed the expression of miR-215, and the total replacement of cholecalciferol with calcidiol did not significantly affect the miRNAome profile. CONCLUSIONS: The functional analysis of differentially expressed miRNAs suggests that the use of the increased dose of the cholecalciferol + calcidiol combination may affect tumorigenesis processes through, inter alia, modulation of gene regulation of the TGF- ß pathway and pathways related to metabolism and synthesis of glycan.


Assuntos
MicroRNAs , Vitamina D , Animais , Suínos , Vitamina D/farmacologia , Vitamina D/metabolismo , Calcifediol/metabolismo , MicroRNAs/genética , Vitaminas , Colecalciferol/farmacologia , Suplementos Nutricionais/análise , Pulmão/metabolismo
2.
Sci Total Environ ; 800: 149531, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34392209

RESUMO

The pollen of Betula pendula Roth (silver birch) is considered to be the main cause of allergy-related rhinitis in Europe and its protein-based allergens such as Bet v 1 are well characterized. However, little is known about non-protein components of birch pollen, e.g., small RNAs and their proinflammatory activity. In the present study, next-generation sequencing (NGS) and bioinformatic approaches were used for silver birch pollen (SBP)-derived microRNA profiling and evaluation of microRNA target genes and pathways in human. Human lung cells, namely WI-38 fibroblasts and A549 alveolar epithelial cells were then stimulated with SBP microRNA in vitro and imaging cytometry-based analysis of the levels of proinflammatory cytokines, autophagy parameters and small RNA processing regulators was conducted. Bioinformatic analysis revealed that SBP microRNA may interfere with autophagy, inflammation and allergy pathways in human. SBP and SBP-derived microRNA induced NF-κB-mediated proinflammatory response in human lung cells as judged by increased levels of NF-κB p65, IL-8 and TNFα. NSUN2 and NSUN5 were involved in pollen-derived microRNA processing. Pollen-derived microRNA also modulated autophagic pathway by changes in the pools of LC3B and p62 that may affect autophagy-based adaptive responses during allergic lung inflammation. We postulate that SBP-derived microRNAs can be considered as novel proinflammatory environmental agents.


Assuntos
Betula , MicroRNAs , Alérgenos , Antígenos de Plantas , Betula/genética , Humanos , Imunoglobulina E , Inflamação , Pulmão , Metiltransferases , MicroRNAs/genética , NF-kappa B/genética , Pólen
3.
BMC Genomics ; 19(1): 864, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30509175

RESUMO

BACKGROUND: Corn dried distillers grains with solubles (cDDGS) are a byproduct of biofuel and alcohol production. cDDGS have been used in pig feed for many years, because they are readily available and rich in protein, fiber, unsaturated fatty acids and phytosterols. However, feed mixtures too high in cDDGS result in the worsening of backfat quality. We performed RNA-sequencing analysis of backfat from crossbred pigs fed different diets. The diets were isoenergetic but contained different amounts of cDDGS and various sources of fats. The animals were divided into four dietary groups during the two months of experimentation: group I (control (-cDDGS+rapeseed oil)), group II (+cDDGS+rapeseed oil), group III (+cDDGS+beef tallow), and group IV (+cDDGS+coconut oil). The aim of the present experiment was to evaluate changes in the backfat transcriptome of pigs fed isoenergetic diets that differed in cDDGS presence. RESULTS: Via DESeq2 software, we identified 93 differentially expressed genes (DEGs) between groups I and II, 13 between groups I and III, and 125 between groups I and IV. DEGs identified between group I (-cDDGS+rapeseed oil) and group II (+cDDGS+rapeseed oil) were highly overrepresented in several KEGG pathways: metabolic pathways (FDR < 1.21e-06), oxidative phosphorylation (FDR < 0.00189), fatty acid biosynthesis (FDR < 0.00577), Huntington's disease (FDR < 0.00577), fatty acid metabolism (FDR < 0.0112), Parkinson's disease (FDR < 0.0151), non-alcoholic fatty liver disease (NAFLD) (FDR < 0.016), Alzheimer's disease (FDR < 0.0211) and complement and coagulation cascades (FDR < 0.02). CONCLUSIONS: We observed that the addition of cDDGS positively affects the expression of several genes that have been recently proposed as potential targets for the treatment of obesity, diabetes, cardiovascular disease, and Alzheimer's disease (e.g., FASN, AACS, ALAS1, HMGCS1, and VSIG4). Thus, our results support the idea of including cDDGS into the diets of companion animals and humans and encourage research into the bioactive ingredients of cDDGS.


Assuntos
Tecido Adiposo/metabolismo , Doenças Cardiovasculares/dietoterapia , Dieta , Doenças Metabólicas/dietoterapia , Zea mays/metabolismo , 5-Aminolevulinato Sintetase/genética , 5-Aminolevulinato Sintetase/metabolismo , Tecido Adiposo/efeitos dos fármacos , Ração Animal/análise , Animais , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Grão Comestível/metabolismo , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo I/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Óleos de Plantas/farmacologia , Mapas de Interação de Proteínas , RNA/química , RNA/isolamento & purificação , RNA/metabolismo , Receptores de IgE/genética , Receptores de IgE/metabolismo , Análise de Sequência de RNA , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA