Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mov Disord ; 34(8): 1192-1202, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31136028

RESUMO

BACKGROUND: Parkinson's disease is an intractable disorder with heterogeneous clinical presentation that may reflect different underlying pathogenic mechanisms. Surrogate indicators of pathogenic processes correlating with clinical measures may assist in better patient stratification. Mitochondrial function, which is impaired in and central to PD pathogenesis, may represent one such surrogate indicator. METHODS: Mitochondrial function was assessed by respirometry experiment in fibroblasts derived from idiopathic patients (n = 47) in normal conditions and in experimental settings that do not permit glycolysis and therefore force energy production through mitochondrial function. Respiratory parameters and clinical measures were correlated with bivariate analysis. Machine-learning-based classification and regression trees were used to classify patients on the basis of biochemical and clinical measures. The effects of mitochondrial respiration on α-synuclein stress were assessed monitoring the protein phosphorylation in permitting versus restrictive glycolysis conditions. RESULTS: Bioenergetic properties in peripheral fibroblasts correlate with clinical measures in idiopathic patients, and the correlation is stronger with predominantly nondopaminergic signs. Bioenergetic analysis under metabolic stress, in which energy is produced solely by mitochondria, shows that patients' fibroblasts can augment respiration, therefore indicating that mitochondrial defects are reversible. Forcing energy production through mitochondria, however, favors α-synuclein stress in different cellular experimental systems. Machine-learning-based classification identified different groups of patients in which increasing disease severity parallels higher mitochondrial respiration. CONCLUSION: The suppression of mitochondrial activity in PD may be an adaptive strategy to cope with concomitant pathogenic factors. Moreover, mitochondrial measures in fibroblasts are potential peripheral biomarkers to follow disease progression. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Metabolismo Energético/fisiologia , Fibroblastos/metabolismo , Mitocôndrias/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Trifosfato de Adenosina/metabolismo , Feminino , Galactose/metabolismo , Glucose/metabolismo , Glicólise/fisiologia , Humanos , Aprendizado de Máquina , Masculino , Modelos Estatísticos , Fosforilação Oxidativa , Doença de Parkinson/fisiopatologia , Fosforilação , Cultura Primária de Células , Índice de Gravidade de Doença , Pele/citologia , Estresse Fisiológico
2.
Biochim Biophys Acta ; 1842(9): 1385-94, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24854107

RESUMO

BACKGROUND: Parkinson's disease (PD) is a complex disease and the current interest and focus of scientific research is both investigating the variety of causes that underlie PD pathogenesis, and identifying reliable biomarkers to diagnose and monitor the progression of pathology. Investigation on pathogenic mechanisms in peripheral cells, such as fibroblasts derived from patients with sporadic PD and age/gender matched controls, might generate deeper understanding of the deficits affecting dopaminergic neurons and, possibly, new tools applicable to clinical practice. METHODS: Primary fibroblast cultures were established from skin biopsies. Increased susceptibility to the PD-related toxin rotenone was determined with apoptosis- and necrosis-specific cell death assays. Protein quality control was evaluated assessing the efficiency of the Ubiquitin Proteasome System (UPS) and protein levels of autophagic markers. Changes in cellular bioenergetics were monitored by measuring oxygen consumption and glycolysis-dependent medium acidification. The oxido-reductive status was determined by detecting mitochondrial superoxide production and oxidation levels in proteins and lipids. RESULTS: PD fibroblasts showed higher vulnerability to necrotic cell death induced by complex I inhibitor rotenone, reduced UPS function and decreased maximal and rotenone-sensitive mitochondrial respiration. No changes in autophagy and redox markers were detected. CONCLUSIONS: Our study shows that increased susceptibility to rotenone and the presence of proteolytic and bioenergetic deficits that typically sustain the neurodegenerative process of PD can be detected in fibroblasts from idiopathic PD patients. Fibroblasts might therefore represent a powerful and minimally invasive tool to investigate PD pathogenic mechanisms, which might translate into considerable advances in clinical management of the disease.


Assuntos
Metabolismo Energético , Fibroblastos/patologia , Mitocôndrias/metabolismo , Doença de Parkinson/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Trifosfato de Adenosina/metabolismo , Apoptose , Autofagia , Estudos de Casos e Controles , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Homeostase , Humanos , Masculino , Pessoa de Meia-Idade , Consumo de Oxigênio/efeitos dos fármacos , Doença de Parkinson/metabolismo , Rotenona/farmacologia , Superóxidos/metabolismo , Desacopladores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA