Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Dairy Sci ; 104(7): 7671-7681, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33814135

RESUMO

We previously reported that milk production in dairy cows was increased by adding a specific xylanase-rich exogenous fibrolytic enzyme (XYL) to a total mixed ration (TMR) containing 10% bermudagrass silage (BMD). Two follow-up experiments were conducted to examine whether adding XYL would increase the performance of dairy cows consuming a TMR containing a higher (20%) proportion of BMD (Experiment 1) and to evaluate the effects of XYL on in vitro fermentation and degradability of the corn silage, BMD, and TMR (Experiment 2). In Experiment 1, 40 lactating Holstein cows in early lactation (16 multiparous and 24 primiparous; 21 ± 3 d in milk; 589 ± 73 kg of body weight) were blocked by milk yield and parity and randomly assigned to the Control and XYL treatments. The TMR contained 20% BMD, 25% corn silage, 8% wet brewer's grain, and 47% concentrate mixture in the dry matter (DM). Cows were fed the XYL-treated or untreated experimental TMR twice per day for 10 wk after a 9-d covariate period. In Experiment 2, ruminal fluid was collected from 3 cannulated lactating Holstein cows fed a diet containing 20% bermudagrass haylage, 25% corn silage and 55% concentrate. In Experiment 1, compared with Control, application of XYL did not affect DM intake (24.0 vs. 23.7 kg/d), milk yield (35.1 vs. 36.2 kg/d), fat-corrected milk yield (36.1 vs. 36.9 kg/d), or yields of milk fat (1.29 vs. 1.31 kg/d) or protein (1.07 vs. 1.08 kg/d). However, intake of neutral detergent fiber (4.67 vs. 4.41 kg/d) tended to increase with XYL; consequently, milk protein concentration was increased by XYL (3.02 vs. 2.95%). Feed efficiency tended to be lower in cows fed XYL (1.57 vs. 1.52 kg of fat-corrected milk/kg of DM intake) compared with Control. In Experiment 2, XYL tended to increase the rate of gas production in the TMR, the molar proportion of propionate for corn silage, and that of valerate for the TMR. In addition, XYL increased in vitro DM, neutral detergent fiber, and acid detergent fiber degradability of BMD and corn silage. Application of XYL to a diet with a relatively high proportion of BMD tended to increase digestible neutral detergent fiber intake, increased milk protein concentration, and in vitro degradability of DM, neutral detergent fiber, and acid detergent fiber. However, XYL did not affect milk production and tended to decrease feed efficiency in early lactation cows.


Assuntos
Lactação , Silagem , Animais , Bovinos , Cynodon , Dieta/veterinária , Fibras na Dieta , Digestão , Feminino , Gravidez , Rúmen , Silagem/análise , Zea mays
2.
J Dairy Sci ; 102(9): 8059-8073, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31326164

RESUMO

Four experiments were conducted to examine the effects of a recombinant bacterial expansin-like protein (BsEXLX1) from Bacillus subtilis and a commercial exogenous fibrolytic enzyme (EFE) preparation for ruminants on hydrolysis of pure substrates (cellulose and xylan) and in vitro digestibility of bermudagrass haylage (BMH). Recombinant Escherichia coli BL21 strain was used to express BsEXLX1; the protein was purified using an affinity column. In experiment 1, carboxymethylcellulose, Whatman #1 filter paper (General Electric, Boston, MA) and oat-spelt xylan substrates were subjected to 4 treatments (1) sodium citrate buffer (control), (2) BsEXLX1 (162 µg/g of substrate), (3) EFE (2.3 mg/g of substrate), and (4) EFE + BsELX1 in 3 independent runs. Samples were incubated at optimal conditions for both additives (pH 5 and 50°C) or at ruminal (pH 6 and 39°C) or ambient (pH 6 and 25°C) conditions for 24 h and sugar release was measured. In experiment 2, digestibility in vitro of BMH was examined after treatment with the following: (1) control (buffer only), (2) BsEXLX1 (162 µg/g of dry matter), (3) EFE (2.2 mg/g of dry matter), and (4) EFE + BsEXLX1 in 3 independent runs at 39°C for 24 h. Experiment 3 examined effects of EFE and BsEXLX1 on simulated preingestive hydrolysis and profile of released sugars from BMH after samples were suspended in deionized water with sodium azide at 25°C for 24 h in 2 independent runs. In experiment 4, the sequence of the BsEXLX1 purified protein was compared with 447 ruminal bacterial genomes to identify similar proteins from the rumen. In experiment 1, compared with EFE alone, EFE and BsEXLX1 synergistically increased sugar release from carboxymethylcellulose and Whatman #1 filter paper under all simulated conditions; however, hydrolysis of xylan was not improved. In experiment 2, compared with EFE alone, treatment with EFE and BsEXLX1 increased neutral detergent fiber and acid detergent fiber digestibility of bermudagrass haylage (by 5.5 and 15%, respectively) and total volatile fatty acid concentrations, and decreased acetate-propionate ratio. In experiment 3, compared with EFE alone. The EFE and BsEXLX1 synergistically reduced concentrations of neutral detergent fiber and acid detergent fiber and increased release of sugars by 9.3%, particularly cellobiose (72.5%). In experiment 4, a similar sequence to that of BsEXLX1 was identified in Bacillus licheniformis, and similar hypothetical protein sequences were identified in Ruminococcus flavefaciens strains along with different protein structures in E. xylanophilum and Lachnospiraceae. This study showed that an expansin-like protein synergistically increased the hydrolysis of pure cellulose substrates and the hydrolysis and digestibility in vitro of BMH.


Assuntos
Ração Animal , Proteínas de Bactérias/administração & dosagem , Bovinos/metabolismo , Cynodon , Proteínas Alimentares/administração & dosagem , Digestão , Xilosidases/administração & dosagem , Animais , Bacillus subtilis , Cynodon/química , Fibras na Dieta/metabolismo , Fermentação , Hidrólise , Distribuição Aleatória , Proteínas Recombinantes/administração & dosagem , Rúmen/metabolismo
3.
J Dairy Sci ; 101(4): 3008-3020, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29428756

RESUMO

The study was conducted to examine the effect of supplementing bentonite clay with or without a Saccharomyces cerevisiae fermentation product (SCFP; 19 g of NutriTek + 16 g of MetaShield, both from Diamond V, Cedar Rapids, IA) on the performance and health of dairy cows challenged with aflatoxin B1 (AFB1). Twenty-four lactating Holstein cows (64 ± 11 d in milk) were stratified by parity and milk production and randomly assigned to 1 of 4 treatment sequences. The experiment had a balanced 4 × 4 Latin square design with 6 replicate squares, four 33-d periods, and a 5-d washout interval between periods. Cows were fed a total mixed ration containing 36.1% corn silage, 8.3% alfalfa hay, and 55.6% concentrate (dry matter basis). Treatments were (1) control (no additives), (2) toxin (T; 1,725 µg of AFB1/head per day), (3) T + clay (CL; 200 g/head per day; top-dressed), and (4) CL+SCFP (CL+SCFP; 35 g/head per day; top-dressed). Cows were adapted to diets from d 1 to 25 (predosing period) and then orally dosed with AFB1 from d 26 to 30 (dosing period), and AFB1 was withdrawn from d 31 to 33 (withdrawal period). Milk samples were collected twice daily from d 21 to 33, and plasma was sampled on d 25 and 30 before the morning feeding. Transfer of ingested AFB1 into milk aflatoxin M1 (AFM1) was greater in T than in CL or CL+SCFP (1.65 vs. 1.01 and 0.94%, respectively) from d 26 to 30. The CL and CL+SCFP treatments reduced milk AFM1 concentration compared with T (0.45 and 0.40 vs. 0.75 µg/kg, respectively), and, unlike T, both CL and CL+SCFP lowered AFM1 concentrations below the US Food and Drug Administration action level (0.5 µg/kg). Milk yield tended to be greater during the dosing period in cows fed CL+SCFP compared with T (39.7 vs. 37.7 kg/d). Compared with that for T, plasma glutamic oxaloacetic transaminase concentration, indicative of aflatoxicosis and liver damage, was reduced by CL (85.9 vs. 95.2 U/L) and numerically reduced by CL+SCFP (87.9 vs. 95.2 U/L). Dietary CL and CL+SCFP reduced transfer of dietary AFB1 to milk and milk AFM1 concentration. Only CL prevented the increase in glutamic oxaloacetic transaminase concentration, and only CL+SCFP prevented the decrease in milk yield caused by AFB1 ingestion.


Assuntos
Aflatoxina B1/farmacologia , Silicatos de Alumínio/metabolismo , Bentonita/metabolismo , Bovinos/metabolismo , Leite/química , Saccharomyces cerevisiae/química , Silicatos de Alumínio/administração & dosagem , Ração Animal/análise , Animais , Bentonita/administração & dosagem , Bovinos/imunologia , Argila , Dieta/veterinária , Suplementos Nutricionais/análise , Feminino , Fermentação , Nível de Saúde , Lactação , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA