Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int Wound J ; 21(1): e14413, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37722846

RESUMO

This study aimed to produce zinc oxide nanoparticles with Calendula officinalis flower extract (Co-ZnO NPs) using the green synthesis method. In addition, the antioxidant and wound healing potential of synthesized ZnO NPs were evaluated. The absorbance band at 355 nm, which is typical for ZnO NPs, was determined from the UV-Vis absorbance spectrum. The energy-dispersive X-ray spectroscopy (EDS) measurements revealed a high zinc content of 42.90%. The x-ray diffractometer data showed Co-ZnO NPs with an average crystallite size of 17.66 nm. The Co-ZnO NPs did not have apparent cytotoxicity up to 10 µg/mL (IC50 25.96 µg/mL). C. officinalis ZnO NPs showed partial cell migration and percent wound closure (69.1%) compared with control (64.8%). In addition, antioxidant activities of Co-ZnO NPs with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2 diphenyl-1 picrylhydrazil (DPPH) were evaluated and radical scavenging activity of 33.49% and 46.63%, respectively, was determined. These results suggest that C. officinalis extract is an effective reducing agent for the green synthesis of ZnO NPs with significant antioxidant and wound healing potential.


Assuntos
Calendula , Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Humanos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Óxido de Zinco/química , Nanopartículas Metálicas/uso terapêutico , Nanopartículas/química , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Antibacterianos , Testes de Sensibilidade Microbiana
2.
Biol Trace Elem Res ; 200(7): 3159-3170, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34546492

RESUMO

The aim of this study was to evaluate the anticancer effects of biosynthesized silver nanoparticles (Vv-AgNPs) from grape (Vitis vinifera L.) seed aqueous extract, alone or in combination with 5-Fluorouracil (5-FU) on HT-29 cell line. Vv-AgNPs were characterized by techniques such as UV-vis spectrophotometer (surface plasmon peak 454 nm), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). HT-29 cells were treated with different concentrations (0-80 µg/mL for MTT) and (0-20 µg/mL for BrdU) of Vv-AgNPs alone and combined with (200 µg/mL) 5-FU for 72 h. The cytotoxic effects were analyzed by [3-(4,5-dimethylthiazol-2- yl)-2,5-diphenyl tetrazolium bromide] (MTT) assay (IC50 values 13.74 and 5.35 µg/mL, respectively). Antiproliferative effects were examined 5-bromo-2'-deoxyuridine (BrdU) assay (IC50 values 9.65 and 5.00 µg/mL, respectively). Activation of caspase-3 and protein expression levels of p53 were determined by Western blotting analysis. It was observed that Vv-AgNPs significantly increased the cleavage of the proapoptotic proteins caspase 3 and obviously enhanced the expression of p53 in a dose-dependent manner. The increased amount of total oxidant status (TOS) in the 10 µg/mL Vv-AgNPs + 5-FU treatment group, despite the increasing amount of total antioxidant status (TAS), caused an increase in Oxidative Stress Index (OSI) compared to the control. In this study, it has been shown in vitro that the use of successfully biosynthesized Vv-AgNPs in combination with 5-FU exhibits synergistic cytotoxic, antiproliferative, apoptotic, and oxidative effects against HT-29 cell line.


Assuntos
Antineoplásicos , Nanopartículas Metálicas , Vitis , Antineoplásicos/farmacologia , Bromodesoxiuridina , Fluoruracila/farmacologia , Células HT29 , Humanos , Nanopartículas Metálicas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Prata/química , Prata/farmacologia , Proteína Supressora de Tumor p53
3.
Biol Trace Elem Res ; 200(9): 4068-4078, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34727320

RESUMO

Alzheimer's disease (AD), especially its sporadic form (sAD), is of multifactorial nature. Brain insulin resistance and disrupted zinc homeostasis are two key aspects of AD that remain to be elucidated. Here, we investigated the effects of dietary zinc deficiency and supplementation on memory, hippocampal synaptic plasticity, and insulin signaling in intracerebroventricular streptozotocin (icv-STZ)-induced sAD in rats. The memory performance was evaluated by Morris water maze. The expression of hippocampal protein and mRNA levels of targets related to synaptic plasticity and insulin pathway was assessed by Western blot and real-time quantitative PCR. We found memory deficits in icv-STZ rats, which were fully recovered by zinc supplementation. Western blot analysis revealed that icv-STZ treatment significantly reduced hippocampal PSD95 and p-GSK3ß, and zinc supplementation restored the normal protein levels. mRNA levels of BDNF, PSD95, SIRT1, GLUT4, insulin receptor, and ZnT3 were found to be reduced by icv-STZ and reestablished by zinc supplementation. Our data suggest that zinc supplementation improves cognitive deficits and rescues the decline in key molecular targets of synaptic plasticity and insulin signaling in hippocampus caused by icv-STZ induced sAD in rats.


Assuntos
Doença de Alzheimer , Memória Espacial , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/metabolismo , Animais , Modelos Animais de Doenças , Hipocampo/metabolismo , Insulina/metabolismo , Aprendizagem em Labirinto , Plasticidade Neuronal , RNA Mensageiro/metabolismo , Ratos , Estreptozocina , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA