Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Drug Metab ; 24(4): 290-302, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37151055

RESUMO

BACKGROUND: Sanwujiao pill (SWJP) is a Chinese herbal preparation widely used in China. It is an essential medicine for treating rheumatism and blood stasis. However, its safety in clinical use has always been the focus of patients because it contains toxic herbs of Aconitum carmichaelii Debx. and A. vilmorinianum Kom. OBJECTIVE: To further reveal the pharmaceutical and toxic effect substances and the action mechanism of SWJPs, the metabolites and their pathways of ten Aconitum alkaloids (AAs) in the preparation at different time points after oral administration in eight organs of mice were investigated. METHOD: The biosamples were investigated by a four-step strategy of UPLC-Q-TOF-MS /MS technology. RESULTS: Aconitine (AC), mesaconitine (MA), and hypaconitine (HA) were not detected in any organs. The highest concentrations of the other seven AAs occurred at 0.5 h. Yunaconitine (YAC) was not detected in the brain; all seven AAs had the lowest concentration in the brain, and the metabolism was slow in the stomach. Twelve predicted metabolites were identified, the kidney and stomach were their primary distribution locations, and the most metabolites were found at 0.5h. The main metabolic pathways of the ten AAs were demethylation, deethylation, deoxygenation, hydroxylation, and deacetylation. CONCLUSION: This is the first report about the metabolism of ten AAs in SWJPs in mice. Significantly, the metabolic pathways and products of four hidden toxic AAs were analyzed in vivo for the first time. The results were of great significance for the safety and effectiveness of SWJPs in clinical application.


Assuntos
Aconitum , Alcaloides , Medicamentos de Ervas Chinesas , Camundongos , Animais , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Redes e Vias Metabólicas
2.
Phytochem Anal ; 33(6): 982-994, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35726458

RESUMO

INTRODUCTION: Platycodon grandiflorum root (PG), a popular traditional Chinese medicine, contains considerable chemical components with broad pharmacological activities. The complexity and diversity of the chemical components of PG from different origins contribute to its broad biological activities. The quality of southern PG is superior to that of northern PG, but the mechanisms underlying these differences remain unclear. OBJECTIVES: In order to study variation in the differentially accumulated metabolites (DAMs), differentially expressed genes (DEGs), as well as their interactions and signalling pathways among PG from Anhui and Liaoning. METHODS: The metabolomes based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) and the transcriptome based on high-throughput sequencing technology were combined to comprehensively analyse PGn and PGb. RESULTS: A total of 6515 DEGs and 83 DAMs from the comparison of PG from Anhui and Liaoning were detected. Integrated analysis of metabolomic and transcriptomic data revealed that 215 DEGs and 57 DAMs were significantly enriched in 48 pathways according to KEGG pathway enrichment analysis, and 15 DEGs and 10 DAMs significantly enriched in the main pathway sesquiterpenoid and triterpenoid and phenylpropanoid biosynthesis might play a key role in complex response or regulatory processes. CONCLUSION: Differences in PG from southern and northern China might thus stem from differences in environmental factors, such as precipitation, light duration, and humidity. The results of our study provide new insight into geographic variation in gene expression and metabolite accumulation and will enhance the utilisation of PG resources.


Assuntos
Platycodon , Cromatografia Líquida , Metabolômica , Platycodon/química , Platycodon/genética , Platycodon/metabolismo , Espectrometria de Massas em Tandem , Transcriptoma
3.
Artigo em Inglês | MEDLINE | ID: mdl-33992880

RESUMO

The lack of direct connection between traditional herbal medicines and multiple biological targets is a bottleneck in herbal research and quality evaluation. To solve this problem, a strategy for the discovery of active ingredients from function-similar herbal medicines based on multiple biological targets was proposed in this article. The technical route includes chromatographic separation, mass spectrometry analysis, enzymatic activity detection, pharmacophore analysis and molecular docking. Five citrus herbs of Citri Reticulatae Pericarpium (CRP), Citri Exocarpium Rubrum (CER), Citri Grandis Exocarpium (CGE), Aurantii Fructus Immaturus (AFI) and Aurantii Fructus (AF) were used as the research objects. A total of 136 chemical components were identified from above five herbs based on LC-Q-TOF-MS/MS and database matching. The extracts of the five herbs showed obvious inhibitory effects on α-glucosidase and acetylcholinesterase in a concentration-dependent manner. Interestingly, the different types of components in the herbs exhibited selectivity for different targets: flavanone glycosides are effective on α-glucosidase but ineffective on acetylcholinesterase; polymethoxyflavonoids are effective on acetylcholinesterase but ineffective on α-glucosidase. Furthermore, we found for the first time that the components in citrus herbs exhibit opposite structure-activity relationships on the above two targets. For example, the methoxy group can enhance the activity of compounds on acetylcholinesterase but weaken the activity of compounds on α-glucosidase. The selective action is a supplement to the "multi-components, multi-targets" system of herbal medicines. Pharmacophore analysis and molecular docking were applied to explore the interaction between active ingredients and biological targets from the perspective of ligands and receptors, respectively. By combining the above multiple technologies, a strong connection among herbal medicines, chemical components and multiple biological targets was established. This work not only helps to understand the similar function of citrus herbs for the treatment of diabetes and Alzheimer's disease, but also provides selective lead compounds for the development of related drugs. This strategy is also helpful to improve the quality evaluation of citrus herbs from the perspective of biological activity.


Assuntos
Bioensaio/métodos , Inibidores da Colinesterase , Cromatografia Líquida/métodos , Citrus/química , Inibidores de Glicosídeo Hidrolases , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Flavonoides , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Relação Estrutura-Atividade , Espectrometria de Massas em Tandem , alfa-Glucosidases/química , alfa-Glucosidases/metabolismo
4.
Biomed Chromatogr ; 34(11): e4946, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32643816

RESUMO

As a traditional Chinese medicine, Marsdenia tenacissima (Roxb.) Wight et Arn. plays an indispensable role in clinical practice owing to its specific efficacy in treating malignant tumors, leukocythemia, cystitis and asthma. This study aimed to establish a novel and scientific LC-MS/MS approach to simultaneously determine tenacissoside B, H, G and I, caffeic acid, cryptochlorogenic acid, chlorogenic acid and neochlorogenic acid from M. tenacissima extract within the rat plasma samples. Digoxin was used as the internal reference. All determinations were carried out using the Eclipse Plus C18 column, and water (containing 0.1% formic acid) was used as the mobile phase A, while acetonitrile was the mobile phase B for gradient elution. The UPLC methods were validated, including calibration curves, accuracy, precision, stability and recovery of the total eight analytes, in accordance with the requirements for biopharmaceutical analysis. Moreover, the proposed approach was also used in comprehensive pharmacokinetic research on those eight analytes in rats following M. tenacissima extract gavage. According to the pharmacokinetic parameters, tenacissoside B, I, H and G are the long-acting and primary bioactive constituents in M. tenacissima extract, with long mean residence times and high concentrations. Our findings shed light on the absorption mechanism and provide significant information for the clinical application of M. tenacissima.


Assuntos
Cromatografia Líquida/métodos , Medicamentos de Ervas Chinesas , Marsdenia , Espectrometria de Massas em Tandem/métodos , Animais , Cinamatos/análise , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacocinética , Glicosídeos/análise , Limite de Detecção , Modelos Lineares , Masculino , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Esteroides/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA