Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36901691

RESUMO

A growing body of evidence suggests that hyperbaric oxygenation (HBO) may affect the activity of adult neural stem cells (NSCs). Since the role of NSCs in recovery from brain injury is still unclear, the purpose of this study was to investigate the effects of sensorimotor cortex ablation (SCA) and HBO treatment (HBOT) on the processes of neurogenesis in the adult dentate gyrus (DG), a region of the hippocampus that is the site of adult neurogenesis. Ten-week-old Wistar rats were divided into groups: Control (C, intact animals), Sham control (S, animals that underwent the surgical procedure without opening the skull), SCA (animals in whom the right sensorimotor cortex was removed via suction ablation), and SCA + HBO (operated animals that passed HBOT). HBOT protocol: pressure applied at 2.5 absolute atmospheres for 60 min, once daily for 10 days. Using immunohistochemistry and double immunofluorescence labeling, we show that SCA causes significant loss of neurons in the DG. Newborn neurons in the subgranular zone (SGZ), inner-third, and partially mid-third of the granule cell layer are predominantly affected by SCA. HBOT decreases the SCA-caused loss of immature neurons, prevents reduction of dendritic arborization, and increases proliferation of progenitor cells. Our results suggest a protective effect of HBO by reducing the vulnerability of immature neurons in the adult DG to SCA injury.


Assuntos
Lesões Encefálicas , Oxigenoterapia Hiperbárica , Células-Tronco Neurais , Ratos , Animais , Ratos Wistar , Células-Tronco Neurais/fisiologia , Hipocampo , Neurônios/fisiologia , Neurogênese/fisiologia , Giro Denteado
2.
Brain Behav Immun ; 89: 233-244, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32592862

RESUMO

Multiple sclerosis develops during reproductive years in a sex-specific manner. Various neuroendocrine changes have been described in this inflammatory, demyelinating, and debilitating disease. We here aimed to determine the extent and sex specificity of alterations in the hypothalamic-pituitary-gonadal axis in the rat model of multiple sclerosis named experimental autoimmune encephalomyelitis. During the disease course, the hypothalamic tissue showed transient upregulation of inflammatory marker genes Gfap, Cd68, Ccl2, and Il1b in both sexes, but accompanied by sex-specific downregulation of Kiss1 (in females only) and Gnrh1 (in males only) expression. In females, the expression of gonadotrope-specific genes Lhb, Cga, and Gnrhr was also inhibited, accompanied by decreased basal but not stimulated serum luteinizing hormone levels and a transient arrest of the estrous cycle. In contrast, Fshb expression and serum progesterone levels were transiently elevated, findings consistent with the maintenance of the corpora lutea, and elevated immunohistochemical labeling of ovarian StAR, a rate limiting protein in steroidogenic pathway. In males, downregulation of Gnrhr expression and basal and stimulated serum luteinizing hormone and testosterone levels were accompanied by inhibited testicular StAR protein expression. We propose that inflammation of hypothalamic tissue downregulates Kiss1 and Gnrh1 expression in females and males, respectively, leading to sex-specific changes downstream the axis.


Assuntos
Encefalomielite Autoimune Experimental , Animais , Feminino , Hipotálamo , Hormônio Luteinizante , Masculino , Ratos
3.
Mediators Inflamm ; 2015: 498405, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25972624

RESUMO

The exact mechanisms by which treatment with hyperbaric oxygen (HBOT) exerts its beneficial effects on recovery after brain injury are still unrevealed. Therefore, in this study we investigated the influence of repetitive HBOT on the reactive astrogliosis and expression of mediators of inflammation after cortical stab injury (CSI). CSI was performed on male Wistar rats, divided into control, sham, and lesioned groups with appropriate HBO. The HBOT protocol was as follows: 10 minutes of slow compression, 2.5 atmospheres absolute (ATA) for 60 minutes, and 10 minutes of slow decompression, once a day for 10 consecutive days. Data obtained using real-time polymerase chain reaction, Western blot, and immunohistochemical and immunofluorescence analyses revealed that repetitive HBOT applied after the CSI attenuates reactive astrogliosis and glial scarring, and reduces expression of GFAP (glial fibrillary acidic protein), vimentin, and ICAM-1 (intercellular adhesion molecule-1) both at gene and tissue levels. In addition, HBOT prevents expression of CD40 and its ligand CD40L on microglia, neutrophils, cortical neurons, and reactive astrocytes. Accordingly, repetitive HBOT, by prevention of glial scarring and limiting of expression of inflammatory mediators, supports formation of more permissive environment for repair and regeneration.


Assuntos
Lesões Encefálicas/metabolismo , Oxigenoterapia Hiperbárica , Animais , Modelos Animais de Doenças , Molécula 1 de Adesão Intercelular/metabolismo , Masculino , Proteínas do Tecido Nervoso/metabolismo , Ratos , Ratos Wistar , Vimentina/metabolismo
4.
Brain Inj ; 26(10): 1273-84, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22571185

RESUMO

OBJECTIVE: To investigate whether hyperbaric oxygenation (HBO) can improve the recovery of motor functions in rats after suction ablation of the right sensorimotor cortex. METHODS: The experimental paradigm implies the following groups: Control animals (C), Control + HBO (CHBO), Sham controls (S), Sham control + HBO (SHBO), Lesion group (L), right sensorimotor cortex was removed by suction, Lesion + HBO (LHBO). Hyperbaric protocol: pressure applied 2.5 atmospheres absolute, for 60 minutes, once a day for 10 days. A beam walking test and grip strength meter were used to evaluate the recovery of motor functions. Expression profiles of growth-associated protein 43 (GAP43) and synaptophysin (SYP) were detected using immunohistochemistry. RESULTS: The LHBO group achieved statistically superior scores in the beam walking test compared to the L group. Additionally, the recovery of muscle strength of the affected hindpaw was significantly enhanced after HBO treatment. Hyperbaric oxygenation induced over-expression of GAP43 and SYP in the neurons surrounding the lesion site. CONCLUSIONS: Data presented suggest that hyperbaric oxygen therapy can intensify neuroplastic responses by promoting axonal sprouting and synapse remodelling, which contributes to the recovery of locomotor performances in rats. This provides the perspective for implementation of HBO in clinical strategies for treating traumatic brain injuries.


Assuntos
Lesões Encefálicas/metabolismo , Oxigenoterapia Hiperbárica , Atividade Motora , Plasticidade Neuronal , Animais , Lesões Encefálicas/fisiopatologia , Modelos Animais de Doenças , Proteína GAP-43/metabolismo , Imuno-Histoquímica , Masculino , Condicionamento Físico Animal , Ratos , Sinaptofisina/metabolismo
5.
Croat Med J ; 53(6): 586-97, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23275324

RESUMO

AIM: To evaluate the effect of hyperbaric oxygen therapy (HBOT) on superoxide dismutase 2 (SOD2) expression pattern after the cortical stab injury (CSI). METHODS: CSI was performed on 88 male Wistar rats, divided into control, sham, lesioned, and HBO groups. HBOT protocol was the following: pressure applied was 2.5 absolute atmospheres, for 60 minutes, once a day for consecutive 3 or 10 days. The pattern of SOD2 expression and cellular localization was analyzed using real-time polymerase chain reaction, Western blot, and double-label fluorescence immunohistochemistry. Neurons undergoing degeneration were visualized with Fluoro-Jade®B. RESULTS: CSI induced significant transient increase in SOD2 protein levels at day 3 post injury, which was followed by a reduction toward control levels at post-injury day 10. At the same time points, mRNA levels for SOD2 in the injured cortex were down-regulated. Exposure to HBO for 3 days considerably down-regulated SOD2 protein levels in the injured cortex, while after 10 days of HBOT an up-regulation of SOD2 was observed. HBOT significantly increased mRNA levels for SOD2 at both time points compared to the corresponding L group, but they were still lower than in controls. Double immunofluorescence staining revealed that 3 days after CSI, up-regulation of SOD2 was mostly due to an increased expression in reactive astrocytes surrounding the lesion site. HBOT attenuated SOD2 expression both in neuronal and astroglial cells. Fluoro-Jade®B labeling showed that HBOT significantly decreased the number of degenerating neurons in the injured cortex. CONCLUSION: HBOT alters SOD2 protein and mRNA levels after brain injury in a time-dependent manner.


Assuntos
Lesões Encefálicas/enzimologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Oxigenoterapia Hiperbárica , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Animais , Western Blotting , Lesões Encefálicas/terapia , Regulação para Baixo , Técnica Indireta de Fluorescência para Anticorpo , Imuno-Histoquímica , Masculino , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Tempo
6.
Neurochem Int ; 55(4): 193-8, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19524108

RESUMO

The aim of the present study was to analyze the activities of extracellular purine metabolizing enzymes, CD39 (apyrase, EC 3.6.1.5) and CD73 (ecto-5' nucleotidase, EC 3.1.3.5) in experimental autoimmune encephalomyelitis (EAE). The levels of ATP, ADP and AMP hydrolysis were analyzed in the blood serum and in the rat spinal cord plasma membrane preparation 8, 15 and 25 days after induction of EAE. The animals were divided in three groups: control (saline), CFA (adjuvant-only) and EAE (CFA and homogenate of spinal cords). Eight days after immunization, ATP, ADP and AMP hydrolysis in the blood serum and spinal cord membrane preparations were unaffected in EAE compared to both, control and CFA group. In the peak of disease, ATP, ADP and AMP hydrolysis in EAE group showed significant decrease in the blood serum and prominent increase in the spinal cord membrane preparation compared to CFA and control group. At the end of illness, as judged by disappearance of clinical manifestation of EAE, ATP, ADP and AMP hydrolysis, although closer to CFA levels, were still significantly different in respect to the CFA group. Modulation of ATP, ADP and AMP hydrolysis suggests that they operate during EAE and might represent the basis of novel therapeutic strategies in immune-mediated diseases, such as MS.


Assuntos
5'-Nucleotidase/metabolismo , Adenosina/metabolismo , Apirase/metabolismo , Encefalomielite Autoimune Experimental/enzimologia , Medula Espinal/enzimologia , Difosfato de Adenosina/sangue , Monofosfato de Adenosina/sangue , Trifosfato de Adenosina/sangue , Animais , Membrana Celular/química , Membrana Celular/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/fisiopatologia , Feminino , Esclerose Múltipla/enzimologia , Esclerose Múltipla/fisiopatologia , Ratos , Ratos Endogâmicos , Medula Espinal/fisiopatologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA