Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ISME J ; 15(3): 833-847, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33208892

RESUMO

Microorganisms in marine sediments play major roles in marine biogeochemical cycles by mineralizing substantial quantities of organic matter from decaying cells. Proteins and lipids are abundant components of necromass, yet the taxonomic identities of microorganisms that actively degrade them remain poorly resolved. Here, we revealed identities, trophic interactions, and genomic features of bacteria that degraded 13C-labeled proteins and lipids in cold anoxic microcosms containing sulfidic subarctic marine sediment. Supplemented proteins and lipids were rapidly fermented to various volatile fatty acids within 5 days. DNA-stable isotope probing (SIP) suggested Psychrilyobacter atlanticus was an important primary degrader of proteins, and Psychromonas members were important primary degraders of both proteins and lipids. Closely related Psychromonas populations, as represented by distinct 16S rRNA gene variants, differentially utilized either proteins or lipids. DNA-SIP also showed 13C-labeling of various Deltaproteobacteria within 10 days, indicating trophic transfer of carbon to putative sulfate-reducers. Metagenome-assembled genomes revealed the primary hydrolyzers encoded secreted peptidases or lipases, and enzymes for catabolism of protein or lipid degradation products. Psychromonas species are prevalent in diverse marine sediments, suggesting they are important players in organic carbon processing in situ. Together, this study provides new insights into the identities, functions, and genomes of bacteria that actively degrade abundant necromass macromolecules in the seafloor.


Assuntos
Fusobactérias , Sedimentos Geológicos , Anaerobiose , Filogenia , RNA Ribossômico 16S/genética
2.
J Microbiol Methods ; 152: 73-79, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30063956

RESUMO

Some studies have described the isolation and 16S rRNA gene sequence-based identification of hydrocarbon-degrading bacteria living associated with marine eukaryotic phytoplankton, and thus far the direct visual observation of these bacteria on micro-algal cell surfaces ('phycosphere') has not yet been reported. Here, we developed two new 16S rRNA-targeted oligonucleotide probes, PCY223 and ALGAR209, to respectively detect and enumerate the obligate hydrocarbonoclastic bacteria Polycyclovorans algicola and Algiphilus aromaticivorans by Catalyzed Reporter Deposition Fluorescence in situ Hybridization (CARD-FISH). To enhance the hybridization specificity with the ALGAR209 probe, a competitor probe was developed. These probes were tested and optimized using pure cultures, and then used in enrichment experiments with laboratory cultures of micro-algae exposed to phenanthrene, and with coastal water enriched with crude oil. Microscopic analysis revealed these bacteria are found in culture with the micro-algal cells, some of which were found attached to algal cells, and whose abundance increased after phenanthrene or crude oil enrichment. These new probes are a valuable tool for identifying and studying the ecology of P. algicola and A. aromaticivorans in laboratory and field samples of micro-algae, as well as opening new fields of research that could harness their ability to enhance the bioremediation of contaminated sites.


Assuntos
Bactérias/genética , Técnicas de Cocultura/métodos , Gammaproteobacteria/isolamento & purificação , Gammaproteobacteria/metabolismo , Hidrocarbonetos/metabolismo , Hibridização in Situ Fluorescente/métodos , Microalgas/metabolismo , Biodegradação Ambiental , Gammaproteobacteria/genética , Gammaproteobacteria/crescimento & desenvolvimento , Microalgas/crescimento & desenvolvimento , Sondas de Oligonucleotídeos , Petróleo/metabolismo , Fenantrenos/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Sensibilidade e Especificidade
3.
Environ Microbiol ; 20(8): 2927-2940, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30051650

RESUMO

Seafloor microorganisms impact global carbon cycling by mineralizing vast quantities of organic matter (OM) from pelagic primary production, which is predicted to increase in the Arctic because of diminishing sea ice cover. We studied microbial interspecies-carbon-flow during anaerobic OM degradation in arctic marine sediment using stable isotope probing. We supplemented sediment incubations with 13 C-labeled cyanobacterial necromass (spirulina), mimicking fresh OM input, or acetate, an important OM degradation intermediate and monitored sulfate reduction rates and concentrations of volatile fatty acids (VFAs) during substrate degradation. Sequential 16S rRNA gene and transcript amplicon sequencing and fluorescence in situ hybridization combined with Raman microspectroscopy revealed that only few bacterial species were the main degraders of 13 C-spirulina necromass. Psychrilyobacter, Psychromonas, Marinifilum, Colwellia, Marinilabiaceae and Clostridiales species were likely involved in the primary hydrolysis and fermentation of spirulina. VFAs, mainly acetate, produced from spirulina degradation were mineralized by sulfate-reducing bacteria and an Arcobacter species. Cellular activity of Desulfobacteraceae and Desulfobulbaceae species during acetoclastic sulfate reduction was largely decoupled from relative 16S rRNA gene abundance shifts. Our findings provide new insights into the identities and physiological constraints that determine the population dynamics of key microorganisms during complex OM degradation in arctic marine sediments.© 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Sedimentos Geológicos/microbiologia , Sulfatos/metabolismo , Sulfetos/metabolismo , Regiões Árticas , Ácidos Graxos Voláteis/metabolismo , Hibridização in Situ Fluorescente , Oxirredução , RNA Ribossômico 16S/genética
4.
ISME J ; 12(7): 1729-1742, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29476143

RESUMO

Sulfur-cycling microorganisms impact organic matter decomposition in wetlands and consequently greenhouse gas emissions from these globally relevant environments. However, their identities and physiological properties are largely unknown. By applying a functional metagenomics approach to an acidic peatland, we recovered draft genomes of seven novel Acidobacteria species with the potential for dissimilatory sulfite (dsrAB, dsrC, dsrD, dsrN, dsrT, dsrMKJOP) or sulfate respiration (sat, aprBA, qmoABC plus dsr genes). Surprisingly, the genomes also encoded DsrL, which so far was only found in sulfur-oxidizing microorganisms. Metatranscriptome analysis demonstrated expression of acidobacterial sulfur-metabolism genes in native peat soil and their upregulation in diverse anoxic microcosms. This indicated an active sulfate respiration pathway, which, however, might also operate in reverse for dissimilatory sulfur oxidation or disproportionation as proposed for the sulfur-oxidizing Desulfurivibrio alkaliphilus. Acidobacteria that only harbored genes for sulfite reduction additionally encoded enzymes that liberate sulfite from organosulfonates, which suggested organic sulfur compounds as complementary energy sources. Further metabolic potentials included polysaccharide hydrolysis and sugar utilization, aerobic respiration, several fermentative capabilities, and hydrogen oxidation. Our findings extend both, the known physiological and genetic properties of Acidobacteria and the known taxonomic diversity of microorganisms with a DsrAB-based sulfur metabolism, and highlight new fundamental niches for facultative anaerobic Acidobacteria in wetlands based on exploitation of inorganic and organic sulfur molecules for energy conservation.


Assuntos
Acidobacteria/metabolismo , Enxofre/metabolismo , Acidobacteria/genética , Acidobacteria/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Oxirredução , Solo/química , Microbiologia do Solo , Sulfatos/metabolismo , Sulfitos/metabolismo , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA