Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Int ; 179: 108132, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37657410

RESUMO

Due to its sensitivity to hormonal signaling, the mammary gland is often referred to as a sentinel organ for the study of endocrine-disrupting chemicals (EDCs), environmental pollutants that can interfere with the estrogen signaling pathway and induce mammary developmental defects. If and how EDCs impact mammary epithelial cell metabolism has not yet been documented. Herein, to study how estrogens and EDCs modulate mammary gland metabolism, we performed bioenergetic flux analyses using mouse mammary epithelial organoids compared to cells grown in monolayer culture. Several EDCs were tested, including bisphenol A (BPA), its close derivative BPS, a new BPA replacement copolyester called TritanTM, and the herbicide glyphosate. We report that estrogens reprogrammed mammary epithelial cell metabolism differently when grown in two- and three-dimensional models. Specific EDCs were also demonstrated to alter bioenergetic fluxes, thus identifying a new potential adverse effect of these molecules. Notably, organoids were more sensitive to low EDC concentrations, highlighting them as a key model for screening the impact of various environmental pollutants. Mechanistically, transcriptomic analyses revealed that EDCs interfered with the regulation of estrogen target genes and the expression of metabolic genes in organoids. Furthermore, co-treatment with the anti-estrogen fulvestrant blocked these metabolic impacts of EDCs, suggesting that, at least partially, they act through modulation of the estrogen receptor activity. Finally, we demonstrate that mammary organoids can be used for long-term studies on EDC exposure to study alterations in organogenesis/morphogenesis and that past pregnancies can modulate the sensitivity of mammary epithelial organoids to specific EDCs. Overall, this study demonstrates that estrogens and EDCs modulate mammary epithelial cell metabolism in monolayer and organoid cultures. A better understanding of the metabolic impacts of EDCs will allow a better appreciation of their adverse effects on mammary gland development and function.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Disruptores Endócrinos , Poluentes Ambientais , Feminino , Gravidez , Animais , Camundongos , Células Epiteliais , Transdução de Sinais , Disruptores Endócrinos/toxicidade , Estrogênios/toxicidade , Metabolismo Energético
2.
PLoS One ; 14(8): e0221528, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31437241

RESUMO

Expressed strongly by myeloid cells, damage-associated molecular pattern (DAMP) proteins S100A8 and S100A9 are found in the serum of patients with infectious and autoimmune diseases. Compared to S100A9, the role of S100A8 is controversial. We investigated its biological activity in collagen-induced arthritis using the first known viable and fertile S100a8-deficient (S100a8-/-) mouse. Although comparable to the wild type (WT) in terms of lymphocyte distribution in blood and in the primary and secondary lymphoid organs, S100a8-/- mice had increased numbers of neutrophils, monocytes and dendritic cells in the blood and bone marrow, and these all expressed myeloid markers such as CD11b, Ly6G and CD86 more strongly. Granulocyte-macrophage common precursors were increased in S100a8-/- bone marrow and yielded greater numbers of macrophages and dendritic cells in culture. The animals also developed more severe arthritic disease leading to aggravated osteoclast activity and bone destruction. These findings were correlated with increased inflammatory cell infiltration and cytokine secretion in the paws. This study suggests that S100A8 is an anti-inflammatory DAMP that regulates myeloid cell differentiation, thereby mitigating the development of experimental arthritis.


Assuntos
Artrite Experimental/patologia , Calgranulina A/deficiência , Mielopoese , Animais , Artrite Experimental/diagnóstico por imagem , Medula Óssea/patologia , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Calgranulina A/metabolismo , Cartilagem/patologia , Diferenciação Celular , Células Dendríticas/metabolismo , Feminino , Deleção de Genes , Camundongos , Células Mieloides/patologia
3.
Clin Immunol ; 104(1): 40-8, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12139946

RESUMO

Chemicals of environmental concern are known to alter the immune system. Recent data indicate that some contaminants possess proinflammatory properties by activating neutrophils, an area of research that is still poorly investigated. We have previously documented that toxaphene activates human neutrophils to produce reactive oxygen species (ROS) and accelerates apoptosis by a yet unknown mechanism. In this study, we found that toxaphene induces another neutrophil function, chemotaxis. Furthermore, we found that toxaphene induces both chemotaxis and apoptosis via a ROS-dependent mechanism, since these responses were blocked by the addition of catalase to the culture. In addition, toxaphene was found to induce the degradation of the cytoskeletal proteins gelsolin, paxillin, and vimentin during apoptosis, and this was reversed by the addition of z-VAD-FMK (caspase inhibitor) or catalase, demonstrating the importance of caspases and ROS in this process. In contrast to toxaphene, we found that beryllium does not induce superoxide production, and, this correlates with its inability to induce chemotaxis and apoptosis. We conclude that toxaphene induces chemotaxis and apoptosis via ROS and that caspases and ROS are involved in the degradation of cytoskeletal proteins.


Assuntos
Apoptose , Berílio/farmacologia , Inibidores de Caspase , Quimiotaxia de Leucócito/fisiologia , Proteínas do Citoesqueleto/metabolismo , Neutrófilos/efeitos dos fármacos , Preparações de Plantas , Proteínas de Plantas , Espécies Reativas de Oxigênio/metabolismo , Toxafeno/farmacologia , Clorometilcetonas de Aminoácidos/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , Radicais Livres , Gelsolina/metabolismo , Humanos , Neutrófilos/metabolismo , Neutrófilos/fisiologia , Paxilina , Fosfoproteínas/metabolismo , Proteínas Inativadoras de Ribossomos Tipo 2 , Superóxidos/metabolismo , Toxinas Biológicas/farmacologia , Vimentina/metabolismo
4.
J Immunol ; 168(3): 1419-27, 2002 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-11801684

RESUMO

Viscum album agglutinin-I (VAA-I) is a plant lectin that possesses interesting potential therapeutic properties and immunomodulatory activities. We have recently found that VAA-I is a potent inducer of human neutrophil apoptosis, but the mechanism(s) involved require further elucidation. In this study, we found that VAA-I alters mitochondrial transmembrane potential and increases intracellular levels of reactive oxygen species (ROS). Despite these observations, treatment with the mitochondrial stabilizer, bongkrekic acid, or with catalase, known to degrade H(2)O(2), fails to reverse VAA-I-induced apoptosis. Moreover, VAA-I was found to induce apoptosis in PLB-985 cells deficient in gp91(phox), indicating that the lectin acts via an ROS-independent mechanism. Pretreatment of neutrophils with brefeldin A, an inhibitor of vesicular transport, was found to reverse VAA-I-induced apoptosis. Protein expression of Mcl-1 was decreased by VAA-I. The role of caspases in the degradation of cytoskeletal proteins during both spontaneous and VAA-I-induced neutrophil apoptosis was also investigated. Paxillin and vimentin were markedly degraded by VAA-I when compared with neutrophils that undergo spontaneous apoptosis, but not vinculin or alpha- and beta-tubulin. Caspases were involved in cytoskeletal protein degradation because preincubation with the pan-caspase inhibitor N-benzyloxycarbonyl-V-A-D-O-methylfluoromethyl ketone was found to reverse protein cleavage. We conclude that VAA-I needs to be internalized to mediate apoptosis and that its activity is not dependent on a cell surface receptor-mediated pathway. Also, we conclude that VAA-I induces apoptosis by ROS-independent and Mcl-1-dependent mechanisms and that caspases are involved in cytoskeletal protein degradation in both spontaneous and VAA-I-induced neutrophil apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Caspases/fisiologia , Proteínas do Citoesqueleto/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Neutrófilos/metabolismo , Fosfoproteínas/metabolismo , Preparações de Plantas , Proteínas de Plantas , Inibidores da Síntese de Proteínas/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2 , Toxinas Biológicas/farmacologia , Vimentina/metabolismo , Brefeldina A/farmacologia , Proteínas do Citoesqueleto/antagonistas & inibidores , Citometria de Fluxo , Humanos , Filamentos Intermediários/efeitos dos fármacos , Filamentos Intermediários/metabolismo , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Erva-de-Passarinho , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/metabolismo , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/enzimologia , Paxilina , Fosfoproteínas/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Proteínas Inativadoras de Ribossomos , Proteínas Inativadoras de Ribossomos Tipo 2 , Células Tumorais Cultivadas , Regulação para Cima/efeitos dos fármacos , Vimentina/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA