Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37646578

RESUMO

Combination therapies targeting multiple organs and metabolic pathways are promising therapeutic options to combat obesity progression and/or its comorbidities. The alterations in the composition of the gut microbiota initially observed in obesity have been extended recently to functional alterations. Bacterial functions involve metabolites synthesis that may contribute to both the gut microbiota and the host physiology. Among them are B vitamins, whose metabolism at the systemic, tissue or microbial level are dysfunctional in obesity. We previously reported that the combination of oral supplementation of a prebiotic (fructo-oligosaccharides, FOS) and vitamin B7/B8 (biotin) impedes fat mass accumulation and hyperglycemia in mice with established obesity. This was associated with an attenuation of dysbiosis with improved microbial vitamin metabolism. We now extend this study by characterizing whole-body energy metabolism along with adipose tissue transcriptome and histology in this mouse model. We observed that FOS resulted in increased caloric excretion in parallel with down-regulation of genes and proteins involved in jejunal lipid transport. The combined treatments also strongly inhibited the accumulation of subcutaneous fat mass, with a reduced adipocyte size and expression of lipid metabolism genes. Down-regulation of inflammatory and fibrotic genes and proteins was also observed in both visceral and brown adipose tissues and liver by combined FOS and biotin supplementation. In conclusion, oral administration of a prebiotic and biotin has a beneficial impact on the metabolism of key organs involved in the pathophysiology of obesity, which could have promising translational applications.

2.
Gut ; 71(12): 2463-2480, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35017197

RESUMO

OBJECTIVES: Gut microbiota is a key component in obesity and type 2 diabetes, yet mechanisms and metabolites central to this interaction remain unclear. We examined the human gut microbiome's functional composition in healthy metabolic state and the most severe states of obesity and type 2 diabetes within the MetaCardis cohort. We focused on the role of B vitamins and B7/B8 biotin for regulation of host metabolic state, as these vitamins influence both microbial function and host metabolism and inflammation. DESIGN: We performed metagenomic analyses in 1545 subjects from the MetaCardis cohorts and different murine experiments, including germ-free and antibiotic treated animals, faecal microbiota transfer, bariatric surgery and supplementation with biotin and prebiotics in mice. RESULTS: Severe obesity is associated with an absolute deficiency in bacterial biotin producers and transporters, whose abundances correlate with host metabolic and inflammatory phenotypes. We found suboptimal circulating biotin levels in severe obesity and altered expression of biotin-associated genes in human adipose tissue. In mice, the absence or depletion of gut microbiota by antibiotics confirmed the microbial contribution to host biotin levels. Bariatric surgery, which improves metabolism and inflammation, associates with increased bacterial biotin producers and improved host systemic biotin in humans and mice. Finally, supplementing high-fat diet-fed mice with fructo-oligosaccharides and biotin improves not only the microbiome diversity, but also the potential of bacterial production of biotin and B vitamins, while limiting weight gain and glycaemic deterioration. CONCLUSION: Strategies combining biotin and prebiotic supplementation could help prevent the deterioration of metabolic states in severe obesity. TRIAL REGISTRATION NUMBER: NCT02059538.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Obesidade Mórbida , Complexo Vitamínico B , Humanos , Camundongos , Animais , Prebióticos , Obesidade Mórbida/cirurgia , Biotina/farmacologia , Complexo Vitamínico B/farmacologia , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Inflamação
3.
Diabetes Care ; 41(8): 1732-1739, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29844096

RESUMO

OBJECTIVE: Nonalcoholic fatty liver disease (i.e., increased intrahepatic triglyceride [IHTG] content), predisposes to type 2 diabetes and cardiovascular disease. Adipose tissue lipolysis and hepatic de novo lipogenesis (DNL) are the main pathways contributing to IHTG. We hypothesized that dietary macronutrient composition influences the pathways, mediators, and magnitude of weight gain-induced changes in IHTG. RESEARCH DESIGN AND METHODS: We overfed 38 overweight subjects (age 48 ± 2 years, BMI 31 ± 1 kg/m2, liver fat 4.7 ± 0.9%) 1,000 extra kcal/day of saturated (SAT) or unsaturated (UNSAT) fat or simple sugars (CARB) for 3 weeks. We measured IHTG (1H-MRS), pathways contributing to IHTG (lipolysis ([2H5]glycerol) and DNL (2H2O) basally and during euglycemic hyperinsulinemia), insulin resistance, endotoxemia, plasma ceramides, and adipose tissue gene expression at 0 and 3 weeks. RESULTS: Overfeeding SAT increased IHTG more (+55%) than UNSAT (+15%, P < 0.05). CARB increased IHTG (+33%) by stimulating DNL (+98%). SAT significantly increased while UNSAT decreased lipolysis. SAT induced insulin resistance and endotoxemia and significantly increased multiple plasma ceramides. The diets had distinct effects on adipose tissue gene expression. CONCLUSIONS: Macronutrient composition of excess energy influences pathways of IHTG: CARB increases DNL, while SAT increases and UNSAT decreases lipolysis. SAT induced the greatest increase in IHTG, insulin resistance, and harmful ceramides. Decreased intakes of SAT could be beneficial in reducing IHTG and the associated risk of diabetes.


Assuntos
Gorduras Insaturadas na Dieta/efeitos adversos , Ácidos Graxos/efeitos adversos , Comportamento Alimentar/fisiologia , Fígado/metabolismo , Monossacarídeos/efeitos adversos , Hepatopatia Gordurosa não Alcoólica/etiologia , Tecido Adiposo/metabolismo , Adulto , Metabolismo dos Carboidratos/fisiologia , Gorduras Insaturadas na Dieta/metabolismo , Ácidos Graxos/metabolismo , Feminino , Humanos , Insulina/metabolismo , Resistência à Insulina , Metabolismo dos Lipídeos/fisiologia , Masculino , Pessoa de Meia-Idade , Monossacarídeos/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Sobrepeso/complicações , Sobrepeso/metabolismo , Triglicerídeos/sangue , Aumento de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA