Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroimage Clin ; 27: 102350, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32736324

RESUMO

Real-time functional magnetic resonance imaging neurofeedback (rtfMRI-nf) has emerged in recent years as an imaging modality used to examine volitional control over targeted brain activity. rtfMRI-nf has also been applied clinically as a way to train individuals to self-regulate areas of the brain, or circuitry, involved in various disorders. One such application of rtfMRI-nf has been in the domain of addictive behaviors, including substance use. Given the pervasiveness of substance use and the challenges of existing treatments to sustain abstinence, rtfMRI-nf has been identified as a promising treatment tool. rtfMRI-nf has also been used in basic science research in order to test the ability to modulate brain function involved in addiction. This review focuses first on providing an overview of recent rtfMRI-nf studies in substance-using populations, specifically nicotine, alcohol, and cocaine users, aimed at reducing craving-related brain activation. Next, rtfMRI-nf studies targeting reward responsivity and emotion regulation in healthy samples are reviewed in order to examine the extent to which areas of the brain involved in addiction can be self-regulated using neurofeedback. We propose that future rtfMRI-nf studies could be strengthened by improvements to study design, sample selection, and more robust strategies in the development and assessment of rtfMRI-nf as a clinical treatment. Recommendations for ways to accomplish these improvements are provided. rtfMRI-nf holds much promise as an imaging modality that can directly target key brain regions involved in addiction, however additional studies are needed in order to establish rtfMRI-nf as an effective, and practical, treatment for addiction.


Assuntos
Comportamento Aditivo , Neurorretroalimentação , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética
2.
Hum Brain Mapp ; 28(10): 1033-44, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17133383

RESUMO

We have implemented a real-time functional magnetic resonance imaging system based on multivariate classification. This approach is distinctly different from spatially localized real-time implementations, since it does not require prior assumptions about functional localization and individual performance strategies, and has the ability to provide feedback based on intuitive translations of brain state rather than localized fluctuations. Thus this approach provides the capability for a new class of experimental designs in which real-time feedback control of the stimulus is possible-rather than using a fixed paradigm, experiments can adaptively evolve as subjects receive brain-state feedback. In this report, we describe our implementation and characterize its performance capabilities. We observed approximately 80% classification accuracy using whole brain, block-design, motor data. Within both left and right motor task conditions, important differences exist between the initial transient period produced by task switching (changing between rapid left or right index finger button presses) and the subsequent stable period during sustained activity. Further analysis revealed that very high accuracy is achievable during stable task periods, and that the responsiveness of the classifier to changes in task condition can be much faster than signal time-to-peak rates. Finally, we demonstrate the versatility of this implementation with respect to behavioral task, suggesting that our results are applicable across a spectrum of cognitive domains. Beyond basic research, this technology can complement electroencephalography-based brain computer interface research, and has potential applications in the areas of biofeedback rehabilitation, lie detection, learning studies, virtual reality-based training, and enhanced conscious awareness.


Assuntos
Biorretroalimentação Psicológica/fisiologia , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Cognição/fisiologia , Imageamento por Ressonância Magnética/métodos , Desempenho Psicomotor/fisiologia , Adulto , Nível de Alerta/fisiologia , Encéfalo/anatomia & histologia , Circulação Cerebrovascular/fisiologia , Potenciais Evocados/fisiologia , Retroalimentação/fisiologia , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Atividade Motora/fisiologia , Testes Neuropsicológicos , Tempo de Reação/fisiologia , Fatores de Tempo , Interface Usuário-Computador
3.
Anesthesiology ; 103(1): 11-9, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15983451

RESUMO

BACKGROUND: Functional magnetic resonance imaging offers a compelling, new perspective on altered brain function but is sparsely used in studies of anesthetic effect. To examine effects on verbal memory encoding, the authors imaged human brain response to auditory word stimulation using functional magnetic resonance imaging at different concentrations of an agent not previously studied, and tested memory after recovery. METHODS: Six male volunteers were studied breathing 0.0, 2.0, and 1.0% end-tidal sevoflurane (awake, deep, and light states, respectively) via laryngeal mask. In each condition, they heard 15 two-syllable English nouns via closed headphones. Each word was repeated 15 times (1/s), followed by 15 s of rest. Blood oxygenation level-dependent brain activations during blocks of stimulation versus rest were assessed with a 3-T Siemens Trio scanner and a 20-voxel spatial extent threshold. Memory was tested approximately 1.5 h after recovery with an auditory recognition task (chance performance = 33% correct). RESULTS: Scans showed widespread activations (P < 0.005, uncorrected) in the awake state, including bilateral superior temporal, frontal, and parietal cortex, right occipital cortex, bilateral thalamus, striatum, hippocampus, and cerebellum; more limited activations in the light state (bilateral superior temporal gyrus, right thalamus, bilateral parietal cortex, left frontal cortex, and right occipital cortex); and no significant auditory-related activation in the deep state. During recognition testing, subjects correctly selected 77 +/- 12% of words presented while they were awake as "old," versus 32 +/- 15 and 42 +/- 8% (P < 0.01) correct for the light and deep stages, respectively. CONCLUSIONS: Sevoflurane induces dose-dependent suppression of auditory blood oxygenation level-dependent signals, which likely limits the ability of words to be processed during anesthesia and compromises memory.


Assuntos
Estimulação Acústica/métodos , Encéfalo/efeitos dos fármacos , Imageamento por Ressonância Magnética/métodos , Éteres Metílicos/farmacologia , Adulto , Encéfalo/metabolismo , Humanos , Modelos Lineares , Masculino , Reconhecimento Psicológico/efeitos dos fármacos , Reconhecimento Psicológico/fisiologia , Sevoflurano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA