Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Hazard Mater ; 443(Pt B): 130267, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36444047

RESUMO

Surfactant foam (SF) can be used to remediate petroleum-contaminated soil because of its easy transfer to inhomogeneous and low-permeability formations. Nanoparticles (NPs) not only stabilize SF under extreme conditions but also impart various functions, aiding the removal of petroleum contaminants. This review discusses the stabilization mechanisms of nanoparticle-stabilized SF (NP-SF) as well as the effects of NP size, chargeability, wettability, and NP-to-surfactant ratio on foam stability. SF stabilized by inert SiO2 NPs is most commonly used to remediate soil contaminated with crude oil and diesel. Low dose of SF stabilized by nano zero-valent iron is cost-effective for treating soil contaminated with chlorinated organics and heavy metal ions. The efficiency and recyclability of Al2O3/Fe3O4 NPs in the remediation of diesel and crude oil contamination could be enhanced by applying a magnetic field. This review provides a theoretical basis and practical guidelines for developing functional NP-SF to improve the remediation of petroleum-contaminated soils. Future research should focus on the structural design of photocatalytic NPs and the application of catalytic NP-SF in soil remediation.


Assuntos
Nanopartículas , Petróleo , Surfactantes Pulmonares , Tensoativos , Dióxido de Silício , Aerossóis , Solo
2.
Huan Jing Ke Xue ; 34(7): 2906-11, 2013 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-24028031

RESUMO

Extraction and identification of surface active substance of Alcaligenes sp. S-XJ-1, as well as description of its emulsion breaking process were conducted to reveal the demulsifying characteristics of this demulsifying strain. Alkali solvent was adopted in the extraction process with conditions optimized as 35 degrees C, 0.08 mol x L(-1) of alkali concentration, 12 g x L(-1) of sample to solution ratio, and 4 h of extraction time by launching both single-factor and orthogonal tests. Under this optimal condition, the extracted surface active substance (the extraction ratio was 36.1%) achieved 77% emulsion breaking ratio for 500 mg x L(-1) within 48 h. FT-IR showed the existence of glycolipids, lipids and proteins in the surface active substance, the molecular weight of which mainly scattered between 55 and 61 256. Saccharides, lipids and proteins were identified as the three chief components in surface active substance with the content of 22.2%, 7.5% and 13.4%, respectively. The proteins were further proved to take the most responsibility for the emulsion breaking ability. Moreover, obvious difference in the emulsion breaking process was demonstrated between the original demulsifying strain S-XJ-1 and the extracted surface active substance by real time observation of Turbiscan Lab Expert. The results suggested that the demulsifying efficiency of the strain was jointly contributed by its surface active substance and demulsifying cell morphology, and the former possessed higher functional priority than the latter.


Assuntos
Alcaligenes/química , Emulsificantes/isolamento & purificação , Emulsões/química , Petróleo/metabolismo , Tensoativos/isolamento & purificação , Emulsificantes/química , Tensão Superficial , Tensoativos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA