Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cancer Gene Ther ; 30(5): 683-693, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36575317

RESUMO

Glioma is a primary brain tumor with limited treatment approaches and glioblastoma stem cells (GSCs) are manifested with the self-renewal capability and high tumorigenic capacity. This study was performed to investigate the regulatory effect of the SUMO-specific protease 1 (SENP1)/methyltransferase-like 3 (METTL3)/MYC axis on the self-renewal of GSCs mediated by transcription factor Yin Yang 1 (YY1). Following bioinformatics analysis and clinical and cellular experiments, we found that YY1 was highly expressed in GBM tissues and cells, while silencing its expression reduced the self-renewal ability of GSCs. Functionally, YY1 promoted the transcriptional expression of SENP1 by binding to the promoter region of SENP1, while the deSUMOase SENP1 facilitated the methylase activity of m6A through deSUMOylation of the methylase METTL3, thereby promoting the m6A modification of MYC mRNA via METL3 and promoting the expression of MYC. A nude mouse xenograft model of GBM was also constructed to examine the tumorigenicity of GSCs. The obtained findings demonstrated that YY1 promoted tumorigenicity of GSCs by promoting the expression of MYC in vivo. Conclusively, YY1 can transcriptionally upregulate the SUMOylase SENP1 and enhance the methylase activity of METTL3, resulting in the increased m6A modification level of MYC mRNA, thereby promoting the self-renewal of GSCs.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Camundongos , Humanos , Glioblastoma/patologia , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo , Peptídeo Hidrolases/metabolismo , Células-Tronco Neoplásicas/patologia , RNA Mensageiro/metabolismo , Neoplasias Encefálicas/genética , Proliferação de Células/genética , Linhagem Celular Tumoral , Metiltransferases/metabolismo , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo
2.
Front Cell Neurosci ; 13: 290, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31312123

RESUMO

Approximately 3% of the world population suffers from depression, which is one of the most common form of mental disorder. Recent findings suggest that an interaction between the nervous system and immune system might be behind the pathophysiology of various neurological and psychiatric disorders, including depression. Neuropeptides have been shown to play a major role in mediating response to stress and inducing immune activation or suppression. Corticotropin releasing factor (CRF) is a major regulator of the hypothalamic pituitary adrenal (HPA) axis response. CRF is a stress-related neuropeptide whose dysregulation has been associated with depression. In this review, we summarized the role of CRF in the neuroimmune mechanisms of depression, and the potential therapeutic effects of Chinese herbal medicines (CHM) as well as other agents. Studying the network of CRF and immune responses will help to enhance our understanding of the pathogenesis of depression. Additionally, targeting this important network may aid in developing novel treatments for this debilitating psychiatric disorder.

3.
Front Pharmacol ; 10: 204, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30930774

RESUMO

Acquired brain ischemia-and reperfusion-injury (IRI), including both Ischemic stroke (IS) and Traumatic Brain injury (TBI), is one of the most common causes of disability and death in adults and represents a major burden in both western and developing countries worldwide. China's clinical neurological therapeutic experience in the use of traditional Chinese medicines (TCMs), including TCM-derived active compounds, Chinese herbs, TCM formulations and decoction, in brain IRI diseases indicated a trend of significant improvement in patients' neurological deficits, calling for blind, placebo-controlled and randomized clinical trials with careful meta-analysis evaluation. There are many TCMs in use for brain IRI therapy in China with significant therapeutic effects in preclinical studies using different brain IRI-animal. The basic hypothesis in this field claims that in order to avoid the toxicity and side effects of the complex TCM formulas, individual isolated and identified compounds that exhibited neuroprotective properties could be used as lead compounds for the development of novel drugs. China's efforts in promoting TCMs have contributed to an explosive growth of the preclinical research dedicated to the isolation and identification of TCM-derived neuroprotective lead compounds. Tanshinone, is a typical example of TCM-derived lead compounds conferring neuroprotection toward IRI in animals with brain middle cerebral artery occlusion (MCAO) or TBI models. Recent reports show the significance of the inflammatory response accompanying brain IRI. This response appears to contribute to both primary and secondary ischemic pathology, and therefore anti-inflammatory strategies have become popular by targeting pro-inflammatory and anti-inflammatory cytokines, other inflammatory mediators, reactive oxygen species, nitric oxide, and several transcriptional factors. Here, we review recent selected studies and discuss further considerations for critical reevaluation of the neuroprotection hypothesis of TCMs in IRI therapy. Moreover, we will emphasize several TCM's mechanisms of action and attempt to address the most promising compounds and the obstacles to be overcome before they will enter the clinic for IRI therapy. We hope that this review will further help in investigations of neuroprotective effects of novel molecular entities isolated from Chinese herbal medicines and will stimulate performance of clinical trials of Chinese herbal medicine-derived drugs in IRI patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA