Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytomedicine ; 109: 154544, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36610155

RESUMO

BACKGROUND: Pinnatifolone A is a typical sesquiterpenoid and the primary active ingredient of Syringa oblata Lindl., has potent anti-inflammatory activity. However, Pinnatifolone A pharmacokinetic and metabolites analysis investigations in male and female rats, as well as its in vitro stability in male and female rat liver microsomes, have not been evaluated and compared. PURPOSE: To investigate preclinical pharmacokinetic and metabolite in both genders, confirm gender differences, and provide usable information for the development of clinical applications. METHODS: A quick, precise, and sensitive LC-MS/MS method was created and effectively used to determine the pharmacokinetics of oral (140 mg/kg) and intravenous (6.3 mg/kg) Pinnatifolone A in male and female rats, in vitro Pinnatifolone A elimination studies in male and female rat liver microsomes. Following that, a UHPLC-Q-TOF-MS/MS technique was established to identify the metabolic profiles of Pinnatifolone A obtained from rat plasma and excreta. RESULTS: In the current study, we established for the first time an LC-MS/MS method for the quantitation of Pinnatifolone A with acceptable linearity and selectivity, recovery and matrix effect, accuracy and precision. The absolute oral bioavailability of Pinnatifolone A was approximately 30.36% in female rats, the clearance (CL) was 20.99±3.33 l/h/kg in female rats and 472.37±437.31 l/h/kg in male rats. This difference in rat genders may pertain to the sex-specific expression of hepatic enzymes as demonstrated in the metabolic stability evaluation in the present research; the male rats exhibited higher CLint(mic) (158.83±9.57 µl/min/mg protein) than female rats (76.47±7.90 µl/min/mg protein) liver microsomes, indicating higher Pinnatifolone A clearance in male rats. Twenty-four metabolites were detected and identified in female and male rats; N-acetylcysteine conjugation metabolite was the most abundant metabolites in both rat feces and urine. Furthermore, male and female rats had significantly different levels of the N-acetylcysteine conjugation metabolite. Hydrogenation metabolite was particular to female rats both in rat fecal and urine. Glucuronide conjugation metabolite was the predominant metabolite in rat plasma, and its amount in female rats was double that of male rats. CONCLUSIONS: The present research is the first to report the preclinical pharmacokinetics and metabolites of Pinnatifolone A in male and female rats, confirming the gender-based differences. The findings provide a comprehensive overview for further understanding of the pharmacokinetic and metabolic characteristics of Pinnatifolone A and serve as a guide for its future development and utilization.


Assuntos
Acetilcisteína , Espectrometria de Massas em Tandem , Ratos , Feminino , Masculino , Animais , Espectrometria de Massas em Tandem/métodos , Disponibilidade Biológica , Cromatografia Líquida , Cromatografia Líquida de Alta Pressão/métodos , Fatores Sexuais , Administração Oral
2.
Nutrients ; 14(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36235582

RESUMO

Diabetes is called a "wasting and thirsting disorder" in Chinese traditional medicine because there is a depletion of vital substances in the body independent of the intake of food or water and an inability to reintroduce fluids through drinking. Pueraria lobata (Willd.) Ohwi (GG) and Pueraria thomsonii Benth. (FG) are traditional Chinese herbal medicines used in the treatment of wasting-thirst that reduce blood glucose levels. Flavonoids are the main pharmacodynamic components of GG and FG, and they are also the most studied components at present, but polysaccharides are also active components of GG and FG, which, however, are less studied. Therefore, this study aimed to investigate the effect of Pueraria polysaccharides (GG and FG polysaccharides) on type 2 diabetes (T2D), as well as their related mechanisms of action in terms of both intestinal flora and metabolomics. The C57BL/KsJ-db/db mouse model, a well-established model of obesity-induced T2D, was used in this study. The metabolomic analysis showed that Pueraria polysaccharides improved the metabolic profile of diabetic mice and significantly regulated metabolites and metabolic pathways. Both GG and FG polysaccharides regulated insulin resistance in mice by regulating PPAR signaling pathway so as to treat T2D. Additionally, Pueraria polysaccharides regulated the structure of gut microbiota and improved the diabetes-related metabolic pathway. Therefore, this study discovered the antidiabetic effects and potential mechanisms of Pueraria polysaccharides through multiple pathways involving gut microbiota and metabolites, providing a theoretical basis for further studies on their effects in the treatment of T2D.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Preparações de Plantas , Pueraria , Animais , Glicemia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Flavonoides , Hipoglicemiantes/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores Ativados por Proliferador de Peroxissomo , Preparações de Plantas/farmacologia , Polissacarídeos/farmacologia , Pueraria/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA