Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytomedicine ; 126: 154887, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38377720

RESUMO

BACKGROUND: The pathophysiology of diabetic encephalopathy (DE), a significant diabetes-related pathological complication of the central nervous system, is poorly understood. Ferroptosis is an iron-dependent regulated necrotic cell death process that mediates the development of neurodegenerative and diabetes-related lesions. Quercetin (QE) exerts anti-ferroptotic effects in various diseases. However, the roles of ferroptosis in DE and the potential anti-ferroptotic mechanisms of QE are unclear. PURPOSE: This study aimed to investigate if quercetin can ameliorate DE by inhibiting ferroptosis and to elucidate the potential anti-ferroptotic mechanisms of QE, thus providing a new perspective on the pathogenesis and prevention of DE. METHODS: The spontaneously type 2 diabetic Goto-Kakizak rats and high glucose (HG)-induced PC12 cells were used as animal and in vitro models, respectively. The Morris water maze test was performed to evaluate the cognition of rats. Pathological damage was examined using hematoxylin and eosin staining. Mitochondrial damage was assessed using transmission electron microscopy. Lipid peroxidation was evaluated by examining the levels of malondialdehyde, superoxide dismutase, and glutathione. Additionally, the contents of iron ions were quantified. Immunofluorescence and western blotting were carried out to poke the protein levels. Network pharmacology analysis was conducted to construct a protein-protein interaction network for the therapeutic targets of QE in DE. Additionally, molecular docking and cellular thermal shift assay was performed to examine the target of QE. RESULTS: QE alleviated cognitive impairment, decreased lipid peroxidation and iron deposition in the hippocampus, and upregulated the Nrf2/HO-1 signaling pathway. HG-induced ferroptosis in PC12 cells resulted in decreased cell viability accompanied by lipid peroxidation and iron deposition. QE mitigated HG-induced ferroptosis by upregulating the Nrf2/HO-1 pathway, which was partially suppressed upon Nrf2 inhibition. Network pharmacology analysis further indicated that the Nrf2/HO-1 signaling pathway is a key target of QE. Molecular docking experiments revealed that QE binds to KEAP1 through four hydrogen bonds. Moreover, QE altered the thermostability of KEAP1. CONCLUSION: These results indicated that QE inhibits ferroptosis in the hippocampal neurons by binding to KEAP1 and subsequently upregulating the Nrf2/HO-1 signaling pathway.


Assuntos
Encefalopatias , Diabetes Mellitus , Ferroptose , Hipoglicemia , Animais , Ratos , Proteína 1 Associada a ECH Semelhante a Kelch , Quercetina/farmacologia , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2 , Hipocampo , Ferro
2.
Biomater Sci ; 10(6): 1562-1574, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35175252

RESUMO

With the fast advent of two-dimensional (2D) MXenes, several therapeutic paradigms based on 2D MXenes flourish, but a generic strategy for MXene functionalization to achieve theranostic functionalities and desirable performance is still lacking. In this work, we report a facile and efficient stepwise surface-functionalization strategy to achieve distinct tumor microenvironment (TME)-responsive T1 and T2 magnetic resonance (MR) imaging-guided photothermal breast-cancer hyperthermia in the second near-infrared (NIR-II) biowindow. This approach is based on the stepwise growth of superparamagnetic Fe3O4 and paramagnetic MnOx nanocomponents onto the large surface of ultrathin 2D niobium carbide (Nb2C) MXene nanosheets (Fe3O4/MnOx-Nb2C) by making full use of the redox status/chemistry of the 2D MXene surface. Such a surface-nanoparticle engineering strategy endows Fe3O4/MnOx-Nb2C composite nanosheets with a series of properties that include high photothermal-conversion efficiency in the NIR-II biowindow (1064 nm, η 30.9%) for effective photothermal tumor eradication without further reoccurrence. It also allows TME-responsive T1- and T2-weighted MR imaging and high biocompatibility for guaranteeing further potential clinical transformation. This work not only makes the efficient diagnostic T1- and T2-weighted MR imaging-guided photonic hyperthermia of breast cancer possible, but also broadens the biomedical applications of MXene-based nanoplatforms by developing novel surface-engineering strategies to construct 2D Nb2C MXene-based composite multifunctional nanoplatforms.


Assuntos
Neoplasias da Mama , Hipertermia Induzida , Nanopartículas , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Feminino , Humanos , Hipertermia Induzida/métodos , Imageamento por Ressonância Magnética , Oxirredução , Fototerapia/métodos , Nanomedicina Teranóstica/métodos , Microambiente Tumoral
3.
Drug Des Devel Ther ; 15: 3255-3276, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34349502

RESUMO

BACKGROUND: Huai Hua San (HHS), a famous Traditional Chinese Medicine (TCM) formula, has been widely applied in treating ulcerative colitis (UC). However, the interaction of bioactives from HHS with the targets involved in UC has not been elucidated yet. AIM: A network pharmacology-based approach combined with molecular docking and in vitro validation was performed to determine the bioactives, key targets, and potential pharmacological mechanism of HHS against UC. MATERIALS AND METHODS: Bioactives and potential targets of HHS, as well as UC-related targets, were retrieved from public databases. Crucial bioactive ingredients, potential targets, and signaling pathways were acquired through bioinformatics analysis, including protein-protein interaction (PPI), as well as the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Subsequently, molecular docking was carried out to predict the combination of active compounds with core targets. Lastly, in vitro experiments were conducted to further verify the findings. RESULTS: A total of 28 bioactive ingredients of HHS and 421 HHS-UC-related targets were screened. Bioinformatics analysis revealed that quercetin, luteolin, and nobiletin may be potential candidate agents. JUN, TP53, and ESR1 could become potential therapeutic targets. PI3K-AKT signaling pathway might play an important role in HHS against UC. Moreover, molecular docking suggested that quercetin, luteolin, and nobiletin combined well with JUN, TP53, and ESR1, respectively. Cell experiments showed that the most important ingredient of HHS, quercetin, could inhibit the levels of inflammatory factors and phosphorylated c-Jun, as well as PI3K-Akt signaling pathway in LPS-induced RAW264.7 cells, which further confirmed the prediction by network pharmacology strategy and molecular docking. CONCLUSION: Our results comprehensively illustrated the bioactives, potential targets, and molecular mechanism of HHS against UC. It also provided a promising strategy to uncover the scientific basis and therapeutic mechanism of TCM formulae in treating diseases.


Assuntos
Colite Ulcerativa/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicina Tradicional Chinesa , Simulação de Acoplamento Molecular , Farmacologia em Rede , Animais , Camundongos , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Quercetina/farmacologia , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos
4.
Biomed Res Int ; 2021: 6688855, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33860051

RESUMO

Polygonatum sibiricum polysaccharides (PSP), the extract of Polygonatum sibiricum, are demonstrated to exhibit a wide range of pharmacological activities. A recent study reported that PSP alleviated the aging of the kidney and meninges. However, the effect of PSP on heart aging remains unclear. The present study is aimed at investigating the protection of PSP on D-galactose- (D-gal-) induced heart aging. Results showed that irregularly arranged cardiac muscle fibers were observed in heart tissues of D-gal-treated mice, and the levels of cardiac troponin T (cTnT), creatine kinase (CK), p21, and p53 were increased after D-gal treatment. D-gal-induced heart aging and injury can be attenuated by oral administration of PSP. Moreover, PSP also decreased reactive oxygen species (ROS) and malondialdehyde (MDA) and increased the level of superoxide dismutase (SOD) in the hearts of D-gal-treated mice. DNA damages and lipid peroxidation induced by oxidative stress were also inhibited by PSP as indicated by reduced levels of 8-hydroxydeoxyguanosine (8-OHdG) and 4-hydroxy-2-nonenal (4-HNE). Collectively, PSP attenuated D-gal-induced heart aging via inhibiting oxidative stress, suggesting that PSP might serve as a potential effective Chinese herbal active constituent for antiaging therapy.


Assuntos
Envelhecimento/patologia , Antioxidantes/farmacologia , Miocárdio/patologia , Polygonatum/química , Polissacarídeos/farmacologia , Envelhecimento/efeitos dos fármacos , Animais , Cardiotônicos/farmacologia , Dano ao DNA , Galactose , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos
5.
J Integr Med ; 19(2): 135-143, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33334712

RESUMO

OBJECTIVE: Bushen Tiansui formula (BSTSF), a traditional Chinese medicine prescription, has been widely used to treat Alzheimer's disease (AD). However, the mechanisms underlying its effects remain largely unknown. In this study, a rat AD model was used to study the effects of BSTSF on cognitive performance and expression of transfer RNA-derived small RNAs (tsRNAs) in the hippocampus, to determine whether treatment of AD with BSTSF could regulate the expression of tsRNAs, a novel small non-coding RNA. METHODS: To generate a validated AD model, oligomeric amyloid-ß1-42 (Aß1-42) was injected intracerebroventricularly into rats. The Morris water maze (MWM) test was used to evaluate rat cognitive performance, and tsRNA-sequencing was conducted to examine tsRNA expression in the rat hippocampus. Potential targets were validated by quantitative real-time polymerase chain reaction (qRT-PCR). Bioinformatic analyses were conducted to investigate the biological function of candidate tsRNAs. RESULTS: The learning and memory deficits of Aß1-42-induced AD rats, assessed by MWM tests, were clearly ameliorated by BSTSF treatment. A total of 387 tsRNAs were detected in the rat hippocampus. Among them, 13 were significantly dysregulated in AD rats compared with sham control rats, while 57 were markedly altered by BSTSF treatment, relative to untreated AD rats (fold change ≥ 2 and P < 0.05). Moreover, six BSTSF treatment-related tsRNAs were identified and validated by qRT-PCR. Bioinformatic analyses indicated that the six treatment-related tsRNAs had potential therapeutic roles, via multiple signaling pathways and Gene Ontology biological functions, including cyclic adenosine monophosphate and retrograde endocannabinoid signaling. CONCLUSION: This study identified a previously uncharacterized mechanism underlying the effects of BSTSF in alleviating the learning and memory deficits in Aß1-42-induced AD rats, demonstrating that tsRNAs are potential therapeutic targets of BSTSF in the treatment of AD.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Animais , Modelos Animais de Doenças , Hipocampo , Medicina Tradicional Chinesa , RNA de Transferência , Ratos
6.
Neural Plast ; 2020: 8874885, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33029123

RESUMO

Bushen-Tiansui Formula (BTF) was empirically updated from a classical prescription named Kong-Sheng-Zhen-Zhong pill. It is based on the traditional Chinese medicine theory of the mutual relationship between the brain and the kidney and is intended to treat neurodegenerative diseases. This formulation has been used for several years to treat patients with Alzheimer's disease- (AD-) like symptoms in our clinical department. However, the medicinal ingredients and the mechanisms by which BTF improves cognition and memory functions have not been characterized. In this study, we used UPLC-MS to generate a chromatographic fingerprinting of BTF and identified five possible active ingredients, including stilbene glycoside; epimedin A1, B, and C; and icariin. We also showed that oral administration of BTF reversed the cognitive defects in an Aß 1-42 fibril-infused rat model of AD, protected synaptic ultrastructure in the CA1 region, and restored the expression of BDNF, synaptotagmin (Syt), and PSD95. These effects likely occurred through the BDNF-activated receptor tyrosine kinase B (TrkB)/Akt/CREB signaling pathway. Furthermore, BTF exhibited no short-term or chronic toxicity in rats. Together, these results provided a scientific support for the clinical use of BTF to improve learning and memory in patients with AD.


Assuntos
Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/administração & dosagem , Encéfalo/efeitos dos fármacos , Cognição/efeitos dos fármacos , Medicamentos de Ervas Chinesas/administração & dosagem , Fragmentos de Peptídeos/administração & dosagem , Doença de Alzheimer/induzido quimicamente , Animais , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças , Masculino , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
7.
Pharm Biol ; 58(1): 932-943, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32956608

RESUMO

CONTEXT: Kai-Xin-San (KXS) has been used to treat Alzheimer's disease (AD) for thousands of years. However, no quantitative data regarding AD treatment using KXS are available. Moreover, its active compounds and mechanism of action for the treatment of AD remain largely unclear. OBJECTIVES: To evaluate the efficacy and the potential pharmacological mechanisms of KXS in AD treatment. MATERIALS AND METHODS: A systematic collection of KXS experiments was conducted from PubMed, Web of Science, Embase, CNKI, VIP, and Wanfang Data up to February, 2020. Review Manager 5 software was used for meta-analysis. In network pharmacology, components of KXS were screened, AD-related genes were then identified and the 'component-target-pathway' network constructed. Molecular docking was finally employed for in silico simulation matching between representative KXS compounds and their target genes. RESULTS: Meta-analysis revealed that KXS improves the cognitive benefits in AD models by reducing the time of escape latency (SMD = -16.84) as well as increasing the number of cross-platform (SMD = 2.56) and proportion of time in the target quadrant (SMD = 7.52). Network pharmacology identified 25 KXS active compounds and 44 genes targets. DRD2, MAOA, ACHE, ADRA2A and CHRM2 were core target proteins. Besides, 22 potential pathways of KXS were identified, like cholinergic synapses, the cGMP/PKG pathway and calcium signalling. Molecular docking showed that stigmasterol, aposcopolamine and inermin can closely bind three targets (ACHE, ADRA2A and CHRM2). DISCUSSION AND CONCLUSION: These findings suggest that KXS exerts effect on AD through multi-target, multi-component and multi-pathway mechanism. Future studies may explore the active components of KXS.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Animais , Modelos Animais de Doenças , Humanos , Medicina Tradicional Chinesa , Simulação de Acoplamento Molecular , Metanálise em Rede , Mapas de Interação de Proteínas , Transdução de Sinais
8.
Med Sci Monit ; 26: e923327, 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32866138

RESUMO

BACKGROUND Zuojinwan (ZJW) is a traditional Chinese prescription normally used for gastritis. Several studies indicated that it could fight against gastric cancer. This study was designed to determine the potential pharmacological mechanism of ZJW in the treatment of gastric cancer. MATERIAL AND METHODS Bioactive compounds and potential targets of ZJW and related genes of gastric cancer were retrieved from public databases. Pharmacological mechanisms including crucial ingredients, potential targets, and signaling pathways were determined using protein-protein interaction (PPI) and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Virtual docking was performed to validate the findings. RESULTS Network analysis identified 47 active ZJW compounds, and 48 potential ZJW target genes linked to gastric cancer. Quercetin, beta-sitosterol, isorhamnetin, wogonin, and baicalein were identified as potential candidate agents. Our PPI analysis results combined with previously published results indicated that matrix metalloproteinases family members MMP9, MMP1, and MMP3 may play key roles in the anti-gastric cancer effect of ZJW. Molecular docking analysis showed that these crucial targets had good affinity for the representative components in ZJW. GO and KEGG enrichment analysis showed that ZJW target genes functioned in multiple pathways for treating gastric cancer, including interleukin-17 signaling and platinum drug resistance. CONCLUSIONS Our results illuminate the active ingredients, associated targets, biological processes, and signaling pathways of ZJW in the treatment of gastric cancer. This study enhances our understanding of the potential effects of ZJW in gastric cancer and demonstrates a feasible method for discovering potential drugs from Chinese medicinal formulas.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Medicina Tradicional Chinesa , Neoplasias Gástricas/terapia , Bases de Dados Genéticas , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacocinética , Medicamentos de Ervas Chinesas/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Metaloproteinases da Matriz/efeitos dos fármacos , Metaloproteinases da Matriz/metabolismo , Simulação de Acoplamento Molecular , Mapas de Interação de Proteínas , Transdução de Sinais/efeitos dos fármacos , Neoplasias Gástricas/enzimologia , Neoplasias Gástricas/genética
9.
Drug Des Devel Ther ; 14: 2725-2740, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32764874

RESUMO

BACKGROUND: Zuojinwan (ZJW), a famous Chinese medicine formula, has been widely used to treat colorectal cancer (CRC). However, its bioactive compounds, potential targets, and molecular mechanism remain largely elusive. AIM: A network pharmacology-based strategy combined with molecular docking studies and in vitro validation were employed to investigate bioactive compounds, potential targets, and molecular mechanism of ZJW against CRC. MATERIALS AND METHODS: Bioactive compounds and potential targets of ZJW, as well as related genes of CRC, were acquired from public databases. Important ingredients, potential targets, and signaling pathways were determined through bioinformatics analysis, including protein-protein interaction (PPI), the Gene Ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Subsequently, molecular docking and cell experiments were performed to further verify the findings. RESULTS: A total of 36 bioactive ingredients of ZJW and 163 gene targets of ZJW were identified. The network analysis revealed that quercetin, baicalein, wogonin, beta-sitosterol, and isorhamnetin may be candidate agents. The AKT1, JUN, CDKN1A, BCL2L1, and NCOA1 could become potential drug targets. The KEGG indicated that PI3K-AKT signaling pathway may play an important role in the effect of ZJW against CRC. Molecular docking suggested that quercetin, baicalein, and wogonin combined well with AKT1 and JUN. The in vitro experiment showed that quercetin, the most important ingredient of ZJW, could induce apoptosis of HCT116 cells through PI3K-Akt signaling pathway. This finding was congruent with the prediction obtained through the network pharmacology approach. CONCLUSION: This study comprehensively illuminated the active ingredients, potential targets, and molecular mechanism of ZJW against CRC. It also provided a promising approach to uncover the scientific basis and therapeutic mechanism of traditional Chinese medicine (TCM) formula treating for disease.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Biologia Computacional , Medicamentos de Ervas Chinesas/química , Humanos , Medicina Tradicional Chinesa , Simulação de Acoplamento Molecular , Estrutura Molecular , Células Tumorais Cultivadas
10.
Oxid Med Cell Longev ; 2020: 5243453, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655770

RESUMO

Bushen Tiansui Formula (BSTSF) is a traditional Chinese medicine prescription. It has been widely applied to treat Alzheimer's disease (AD) in the clinic; however, the mechanisms underlying its effects remain largely unknown. In this study, we used a rat AD model to study the effects of BSTSF on cognitive performance, and UPLC-MS/MS-based metabolomic and lipidomic analysis was further performed to identify significantly altered metabolites in the cerebral cortices of AD rats and determine the effects of BSTSF on the metabolomic and lipidomic profiles in the cerebral cortices of these animals. The results revealed that the levels of 47 metabolites and 30 lipids primarily associated with sphingolipid metabolism, glycerophospholipid metabolism, and linoleic acid metabolism were significantly changed in the cerebral cortices of AD rats. Among the altered lipids, ceramides, phosphatidylethanolamines, lysophosphatidylethanolamines, phosphatidylcholines, lysophosphatidylcholines, phosphatidylserines, sphingomyelins, and phosphatidylglycerols showed robust changes. Moreover, 34 differential endogenous metabolites and 21 lipids, of which the levels were mostly improved in the BSTSF treatment group, were identified as potential therapeutic targets of BSTSF against AD. Our results suggest that lipid metabolism is highly dysregulated in the cerebral cortices of AD rats, and BSTSF may exert its neuroprotective mechanisms by restoring metabolic balance, including that of sphingolipid metabolism, glycerophospholipid metabolism, alanine, aspartate, and glutamate metabolism, and D-glutamine and D-glutamate metabolism. Our data may lead to a deeper understanding of the AD-associated metabolic profile and shed new light on the mechanism underlying the therapeutic effects of BSTSF.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/uso terapêutico , Neuroproteção/efeitos dos fármacos , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/metabolismo , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/toxicidade , Animais , Biomarcadores/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Fragmentos de Peptídeos/toxicidade , Ratos , Ratos Sprague-Dawley
12.
Xenobiotica ; 50(5): 545-551, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31524030

RESUMO

Hydroxysafflor yellow A (HSYA) is the most pharmaceutically relevant compound in Xuebijing (XBJ) for traumatic brain injury (TBI) treatment. We aimed to investigate biofluids pharmacokinetics of HSYA from XBJ to ensure the drug safety and to guide the clinical use.A sensitive, rapid and reliable liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was applied to investigate pharmacokinetics of HSYA in TBI patients after intravenous administration of XBJ. Non-compartmental methods using DAS 3.0 software were applied to analyse the pharmacokinetic parameters.A similar half-life (Plasmat1/2: 14.55 ± 3.51 h vs. CSFt1/2: 15.73 ± 3.63) was observed. HSYA reached the peak level rapidly, but exhibited a strongly slow absorption phase from blood to cerebrospinal fluid (CSF, PlasmaTmax: 0.69 ± 0.26 h vs. CSFTmax: 4.0 ± 2.62 h). HSYA exhibited much higher Cmax (PlasmaCmax: 9342.76 ± 2489.23 µg/L vs. CSFCmax: 98.08 ± 14.51 µg/L) and AUC0-t (PlasmaAUC0-t: 57490.5 ± 5560.3 µg h/L vs. CSFAUC0-t: 1851.6 ± 269.1 µg h/L), yet a shorter CL (PlasmaCL: 0.02 ± 0.002 L/h/kg vs. CSFCL: 0.55 ± 0.01 L/h/kg) in plasma than in CSF. The AUCCSF/AUCplasma of HSYA was almost 3.37%.In summary, the results demonstrate that part of HSYA come across blood-brain barrier after XBJ administration. This study provides evidence for better understanding the pharmacokinetics and potential for clinical guidance of XBJ for TBI treatment.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Chalcona/análogos & derivados , Medicamentos de Ervas Chinesas/metabolismo , Quinonas/metabolismo , Administração Intravenosa , Lesões Encefálicas Traumáticas/sangue , Lesões Encefálicas Traumáticas/líquido cefalorraquidiano , Chalcona/sangue , Chalcona/líquido cefalorraquidiano , Chalcona/metabolismo , Humanos , Farmacocinética , Quinonas/sangue , Quinonas/líquido cefalorraquidiano
13.
J Ethnopharmacol ; 249: 112371, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31683034

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Bushen Tiansui Formula (BSTSF) is a traditional Chinese medicine formula used clinically to treat Alzheimer's disease (AD) for many years. Previously, we have partially elucidated the mechanisms involved in the therapeutic effects of BSTSF on AD. However, the underlying mechanisms remain largely unclear. AIM OF THE STUDY: The aim of this study was to further investigate the therapeutic effects of BSTSF on AD using an integrated strategy of network pharmacology and serum metabolomics. MATERIALS AND METHODS: The rat models of AD were established using Aß 1-42 injection, and morris water maze test was used to evaluate the efficacy of BSTSF on AD. Next, network pharmacology analysis was applied to identify the active compounds and target genes, which might be responsible for the effect of BSTSF. Then, a metabolomics strategy has been developed to find the possible significant serum metabolites and metabolic pathway induced by BSTSF. Additionally, two parts of the results were integrated to confirm each other. RESULTS: The results of the network pharmacology analysis showed 37 compounds and 64 potential target genes related to the treatment of AD with BSTSF. The functional enrichment analysis indicated that the potential mechanism was mainly associated with the tumor necrosis factor signaling pathway and phosphatidylinositol 3 kinase/protein kinase B signaling pathway. Based on metabolomics, 78 differential endogenous metabolites were identified as potential biomarkers related to the BSTSF for treating AD. These metabolites were mainly involved in the relevant pathways of linoleic acid metabolism, α-linolenic acid metabolism, glycerophospholipid metabolism, tryptophan metabolism, and arginine and proline metabolism. These findings were partly consistent with the findings of the network pharmacology analysis. CONCLUSIONS: In conclusion, our results solidly supported and enhanced out current understanding of the therapeutic effects of BSTSF on AD. Meanwhile, our work revealed that the proposed network pharmacology-integrated metabolomics strategy was a powerful means for identifying active components and mechanisms contributing to the pharmacological effects of traditional Chinese medicine.


Assuntos
Doença de Alzheimer/sangue , Doença de Alzheimer/tratamento farmacológico , Cognição/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Metaboloma/efeitos dos fármacos , Soro/metabolismo , Animais , Biomarcadores/sangue , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Medicina Tradicional Chinesa/métodos , Redes e Vias Metabólicas/efeitos dos fármacos , Metabolômica/métodos , Ratos , Ratos Sprague-Dawley
14.
Drug Des Devel Ther ; 13: 3989-4005, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31819371

RESUMO

BACKGROUND: Traditional Chinese medicine (TCM) formulations have proven to be advantageous in clinical treatment and prevention of disease. LiuWei DiHuang Pill (LWDH Pill) is a TCM that was employed to treat type 2 diabetes mellitus (T2DM). However, a holistic network pharmacology approach to understanding the active ingredients and the therapeutic mechanisms underlying T2DM has not been pursued. METHODS: A network pharmacology approach including drug-likeness evaluation, oral bioavailability prediction, virtual docking, and network analysis has been used to predict the active ingredients and potential targets of LWDH Pill in the treatment of type 2 diabetes. RESULTS: The comprehensive network pharmacology approach was successfully to identify 45 active ingredients in LWDH Pill. 45 active ingredients hit by 163 potential targets related to T2DM. Ten of the more highly predictive components (such as :quercetin, Kaempferol, Stigmasterol, beta-sitosterol, Kadsurenone, Diosgenin, hancinone C, Hederagenin, Garcinone B, Isofucosterol) are involved in anti-inflammatory, anti-oxidative stress, and the reduction of beta cell damage. LWDH Pill may play a role in the treatment of T2DM and its complications (atherosclerosis and nephropathy) through the AGE-RAGE signaling pathway, TNF signaling pathway, and NF-kappa B signaling pathway. CONCLUSION: Based on a systematic network pharmacology approach, our works successfully predict the active ingredients and potential targets of LWDH Pill for application to T2DM and helps to illustrate mechanism of action on a comprehensive level. This study provides identify key genes and pathway associated with the prognosis and pathogenesis of T2DM from new insights, which also demonstrates a feasible method for the research of chemical basis and pharmacology in LWDH Pill.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Hipoglicemiantes/uso terapêutico , Análise por Conglomerados , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/isolamento & purificação , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/isolamento & purificação
15.
Artigo em Inglês | MEDLINE | ID: mdl-31379968

RESUMO

OBJECTIVE: To systematically review whether the Kangai injection (KAI), which is commonly used traditional Chinese medicine, can improve the clinical efficacy of chemotherapy and relieve adverse reactions of chemotherapy in advanced colorectal cancer (CRC) patients. METHODS: A comprehensive literature search was performed in three English and three Chinese electronic databases until March 2019. The literature was screened by EndNote X8 and data were analysed by RevMan5 and Stata12.0. RESULTS: This meta-analysis consisted of twenty-eight studies, of which 2310 cases were reported. Among the 2310 cases, 1207 cases were treated with KAI combined with chemotherapy and 1103 cases were treated with chemotherapy alone. The results showed that KAI combined with chemotherapy significantly improved tumor response (Risk Ratio (RR) =1.32; 95% confidence interval (CI): 1.22-1.43; p<0.00001); Karnofsky performance status (KPS score) (Risk Ratio (RR) =1.48; 95% CI: 1.36-1.60; p<0.00001); reduced adverse drug reactions (ADRs) such as nausea and vomiting (OR =0.31; 95% CI: 0.24-0.41; p <0.00001), diarrhea (OR =0.36; 95% CI: 0.25-0.52; p<0.00001), leukopenia (OR =2.97; 95% CI:2.27-3.88; p<0.00001), thrombocytopenia (OR =0.53; 95% CI: 0.38-0.74; p<0.0002), liver dysfunction (OR =0.29; 95% CI: 0.20-0.44; p<0.00001), neurotoxicity (OR =0.51; 95% CI: 0.36-0.71; p = 0.0004); increased immune function (CD3+: MD=6.34; 95% CI: 5.52-7.16; p < 0.00001, CD4+: MD=-5.99; 95% CI: 5.20-6.78; p < 0.00001; and CD4+/CD8+: MD=0.34; 95% CI: 0.14-0.54; p < 0.0009), and prolonged survival time (OR =1.77; 95% CI: 1.25-2.50; p = 0.001). Renal dysfunction caused by chemotherapy was not affected by KAI treatment (Odds Ratio (OR) =0.53; 95%IC: 0.25-1.12; p = 0.10). CONCLUSION: KAI can increase clinical effectiveness, improve quality of life, alleviate ADRs, and prolong survival time in advanced colorectal (CRC) patients receiving chemotherapy.

16.
Artigo em Inglês | MEDLINE | ID: mdl-30992708

RESUMO

OBJECTIVE: To systematically evaluate the efficacy of Xihuang pill (XHP) in breast cancer patients receiving chemotherapy. METHODS: Three English and four Chinese databases were searched. Literature was screened using EndNote X7 and data were analyzed by Review Manager. RESULTS: This review included 13 randomized clinical studies of 1272 patients. The results showed that XHP increased the tumor response [risk ratio (RR) = 2.91; 95% confidence interval (CI): 1.98-4.26] and improved Karnofsky performance score (KPS) for breast cancer patients receiving chemotherapy [RR = 4.96; 95% CI = 2.07-11.86]. In addition, XHP treatment significantly reduced chemotherapy-induced adverse events, including nausea and vomiting [RR = 0.50; 95% CI = 0.33-0.74], WBC reduction [RR = 0.71; 95% CI = 0.47-1.06], platelet reduction [RR = 0.53; 95% CI = 0.19-1.44], hemoglobin reduction [RR = 0.31; 95% CI = 0.19-0.52], and hepatic function damage [RR = 0.63; 95% CI = 0.35-1.11]. CONCLUSION: XHP combined with chemotherapy in comparison with chemotherapy alone could significantly enhance the tumor response, improve KPS, and alleviate toxicity induced by chemotherapy in breast cancer patients.

17.
J Ethnopharmacol ; 224: 140-148, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-29852266

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese medicine has been utilized for the treatment of cancer. Jianpi Jiedu decoction (JPJD), a traditional Chinese medicine formula, has been used for the treatment of colorectal cancer for decades. However, the underlying molecular mechanistic basis for the effect of JPJD on colorectal cancer is poorly understood. AIM OF THE STUDY: The aim of this study was to identify the effects of JPJD on human colon cancer cells in vitro as well as in vivo and to investigate the mechanistic basis for the anticancer effect of JPJD. MATERIALS AND METHODS: The in vitro antitumor activity of JPJD was assessed by MTT assay, flow cytometric analysis, wound-healing assay, transwell assays, and tube formation assays in order to assess cell activity, apoptosis, migration, invasion, and angiogenesis, respectively. The anticancer properties of JPJD in vivo were assessed by immunohistochemistry in a nude mouse xenograft model of HCT116 cells. In addition, the level of mTOR/HIF-1α/VEGF signaling pathway proteins in HCT116 cells and tumor tissue was evaluated by immunoblotting. RESULTS: In vitro, JPJD significantly inhibited colorectal cancer cell lines viability and proliferation. Flow cytometry analysis demonstrated JPJD to induce HCT116 cell apoptosis. Additionally, JPJD effectively suppressed tumor cell migration, invasion, and angiogenesis by inhibiting the mTOR/HIF-1α/VEGF signaling pathway. In vivo, JPJD significantly inhibited HCT116 tumor growth in athymic nude mice, decreased the levels of CD34 as well as VEGF, and downregulated the mTOR/HIF-1α/VEGF pathway. CONCLUSIONS: JPJD treatment produced anti-colorectal tumor effects by inhibiting tumorigenesis, metastasis, as well as angiogenesis through the mTOR/HIF-1α/VEGF pathway. Thus, these results provide a strong rationale for the therapeutic use of JPJD in cancer treatment. Further studies are required to investigate the mechanisms underlying anti-CRC effect of JPJD.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Masculino , Medicina Tradicional Chinesa , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
18.
Artigo em Inglês | MEDLINE | ID: mdl-29619070

RESUMO

OBJECTIVE: To systematically review the effect of invigorating Pi and detoxification (Jianpi Jiedu, (JPJD)) herbs in advanced colorectal cancer (CRC) patients receiving chemotherapy. METHODS: Three English and four Chinese databases were searched. Literature was screened by EndNote X7 and data were analyzed by RevMan 5.2. RESULTS: This review comprised 12 randomized clinical studies of 701 patients. The results showed that JPJD herbs improved the therapeutic effect on Chinese medicine symptoms [risk ratio (RR) = 1.59; 95% confidence interval (CI): 1.35~1.88] and Karnofsky performance score [RR = 2.07; 95% CI: 1.52~2.82] for advanced CRC patients receiving chemotherapy, lowered the Chinese medicine symptoms' score [weighted mean difference = -2.44; 95% CI: -3.23~-1.64], reduced the incidence of nausea and vomiting [RR = 0.23; 95% CI: 0.11~0.49], improved platelet at toxicity grades III-IV [odds ratio = 0.29; 95% CI: 0.12~0.74] and I-IV [RR = 0.65; 95% CI: 0.51~0.82], and improved white blood cell at toxicity grades III-IV [RR = 0.37; 95% CI: 0.23~0.58] and I-IV [RR = 0.69; 95% CI: 0.60~0.79]. However, the results showed no significant effect on tumor response. CONCLUSION: JPJD herbs can improve quality of life, relieve symptoms, and reduce adverse events of advanced CRC patients receiving chemotherapy.

19.
Pharmacogn Mag ; 14(53): 134-139, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29576714

RESUMO

BACKGROUND: Rhubarb is a traditional Chinese medicine for treating traumatic brain injury (TBI). PURPOSE: The purpose of this study is to elucidate the potential mechanism of rhubarb by suppressing extracellular signal-regulated kinase (ERK) to ameliorate brain edema. MATERIALS AND METHODS: Sprague-Dawley rats were separated into four groups at random. One group received 3 g/kg rhubarb, and another group received 12 g/kg rhubarb, and the vehicle group and sham group were administered the same dose of saline solution. The blood-brain barrier disruption and edema were detected by Evans blue extravasation and water content, respectively. ERK, Matrix metalloproteinase 9 (MMP-9), and zonula occluden-1 (ZO-1) in the damaged tissue were measured by western blot analysis and quantitative real-time polymerase chain reaction. RESULTS: Rhubarb attenuated the brain edema after TBI, especially at the dose of 12 g/kg. Rhubarb significantly suppressed ERK, down-regulated MMP-9, and up-regulated ZO-1. Rhubarb might be a prospective therapeutic regimen to decrease edema in TBI. CONCLUSIONS: Rhubarb alleviates the edema by restraining the ERK signaling pathway. Our results contribute to the validation of the traditional use of rhubarb in the treatment of TBI and its mechanism. SUMMARY: The aim of this study was to explore the potential mechanism of rhubarb by suppressing extracellular signal-regulated kinase to ameliorate brain edema. Results: Rhubarb ameliorates edema caused by traumatic brain injury by inhibiting the ERK/Matrix metalloproteinase 9/zonula occluden-1 signaling pathway. Abbreviations used: TBI: Traumatic brain injury, ERK: Extracellular signal-regulated kinase pathway, MMP-9: Matrix metalloproteinase 9, ZO-1: Zonula occluden-1, BBB: Blood-brain barrier, PCR: Polymerase chain reaction, TCM: Traditional Chinese medicine, MAPKs: Mitogen-activated protein kinases, CCI: Controlled cortical impact, DL: Rhubarb 3 g/kg in distilled water, DH: Rhubarb 12 g/kg in distilled water, EB: Evans blue, IOD: Integral optical density, MEK: Mitogen extracellular kinase, MMPs: Matrix metalloproteinases, NADPH: Nicotinamide adenine dinucleotide phosphate: ROS, reactive oxygen species.

20.
Biomed Res Int ; 2018: 3951783, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30596090

RESUMO

Traumatic brain injury (TBI) is a critical public health and socioeconomic problem worldwide. The herb pair Astragali Radix (AR)-Radix Angelica Sinensis (RAS) is a common prescribed herbal formula or is added to other Chinese medicine prescriptions for traumatic brain injury (TBI) treatment. However, the underlying mechanisms are unclear. In this study, we aimed to explore the active ingredients and action targets of AR-RAS based on the combined methods of network pharmacology prediction and experimental verification. Furthermore, the corresponding potential mechanisms of "multicomponents, multitargets, and multipathways" were disclosed. Methods. A network pharmacology approach including ADME (absorption, distribution, metabolism, and excretion) filter analysis, target prediction, known therapeutic targets collection, Gene Ontology (GO), pathway enrichment analysis, and network construction was used in this study. Further verification experiments were performed to reveal the therapeutic effects of AR-RAS in a rat model of TBI. Results. The comprehensive systematic approach was to successfully identify 14 bioactive ingredients in AR-RAS, while 33 potential targets hit by these ingredients related to TBI. Based on GO annotation analysis, multiple biological processes were significantly regulated by AR-RAS. In addition, 89 novel signaling pathways (P<0.05) underlying the effects of AR-RAS for TBI treatment were identified by DAVID. The neurotrophin signaling pathway was suggested as the major related pathway targeted by AR-RAS to improve axonal growth. The animal experiment confirmed that AR-RAS significantly induced tissue recovery and improved neurological deficits on the 14th day (P<0.01). Treatment with AR-RAS markedly reduced the protein and mRNA expression level of NogoA in the hippocampus of TBI rats. Conclusion. Our work illuminates the "multicompounds, multitargets, and multipathways" curative action of AR-RAS in the treatment of TBI by network pharmacology. The animal experiment verifies the effects of AR-RAS on neurological function improvement and axonal outgrowth via downregulation of NogoA expression, providing a theoretical basis for further research on treatment of TBI.


Assuntos
Angelica sinensis/química , Astrágalo/química , Lesões Encefálicas Traumáticas/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Animais , Astragalus propinquus , Axônios/efeitos dos fármacos , Medicamentos de Ervas Chinesas/química , Masculino , Medicina Tradicional Chinesa/métodos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA