Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytomedicine ; 123: 155214, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38134861

RESUMO

BACKGROUND: Gemcitabine is a first-line chemotherapeutic agent for pancreatic cancer (PC); however, most patients who receive adjuvant gemcitabine rapidly develop resistance and recurrence. Cancer-associated fibroblasts (CAFs) are a crucial component of the tumor stroma that contribute to gemcitabine-resistance. There is thus an urgent need to find a novel therapeutic strategy to improve the efficacy of gemcitabine in PC cells under CAF-stimulation. PURPOSE: To investigate if shikonin potentiates the therapeutic effects of gemcitabine in PC cells with CAF-induced drug resistance. METHODS: PC cell-stimulated fibroblasts or primary CAFs derived from PC tissue were co-cultured with PC cells to evaluate the ability of shikonin to improve the chemotherapeutic effects of gemcitabine in vitro and in vivo. Glucose uptake assay, ATP content analysis, lactate measurement, real-time PCR, immunofluorescence staining, western blot, and plasmid transfection were used to investigate the underlying mechanism. RESULTS: CAFs were innately resistant to gemcitabine, but shikonin suppressed the PC cell-induced transactivation and proliferation of CAFs, reversed CAF-induced resistance, and restored the therapeutic efficacy of gemcitabine in the co-culture system. In addition, CAFs underwent a reverse Warburg effect when co-cultured with PC cells, represented by enhanced aerobic glycolytic metabolism, while shikonin reduced aerobic glycolysis in CAFs by reducing their glucose uptake, ATP concentration, lactate production and secretion, and glycolytic protein expression. Regarding the mechanism underlying these sensitizing effects, shikonin suppressed monocarboxylate transporter 4 (MCT4) expression and cellular membrane translocation to inhibit aerobic glycolysis in CAFs. Overexpression of MCT4 accordingly reversed the inhibitory effects of shikonin on PC cell-induced transactivation and aerobic glycolysis in CAFs, and reduced its sensitizing effects. Furthermore, shikonin promoted the effects of gemcitabine in reducing the growth of tumors derived from PC cells and CAF co-inoculation in BALB/C mice, with no significant systemic toxicity. CONCLUSION: These results indicate that shikonin reduced MCT4 expression and activation, resulting in inhibition of aerobic glycolysis in CAFs and overcoming CAF-induced gemcitabine resistance in PC. Shikonin is a promising chemosensitizing phytochemical agent when used in combination with gemcitabine for PC treatment. The results suggest that disrupting the metabolic coupling between cancer cells and stromal cells might provide an attractive strategy for improving gemcitabine efficacy.


Assuntos
Fibroblastos Associados a Câncer , Naftoquinonas , Neoplasias Pancreáticas , Animais , Camundongos , Humanos , Gencitabina , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Neoplasias Pancreáticas/patologia , Ácido Láctico/metabolismo , Ácido Láctico/farmacologia , Ácido Láctico/uso terapêutico , Glucose/metabolismo , Trifosfato de Adenosina/metabolismo
2.
J Agric Food Chem ; 71(42): 15553-15568, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37815401

RESUMO

The aim of this study was to investigate the changes in human and animal milk oligosaccharides over lactation. In total, 89, 97, 115, and 71 oligosaccharides were identified in human, bovine, goat, and camel milk. The number of common oligosaccharides between camel and human milk was the highest (16 and 17 in transitional and mature milk). With respect to the absolute concentration of eight oligosaccharides (2'-FL, 3-FL, α3'-GL, LNT, LNnT, 3'-SL, 6'-SL, and DSL), 2'-FL, 3'-FL, LNT, and LNnT were much higher in human than three animal species. 3'-SL had a similar concentration in bovine colostrum (322.2 µg/mL) and human colostrum (321.0 µg/mL), followed by goat colostrum (105.1 µg/mL); however, it had the highest concentration in camel mature milk (304.5 µg/mL). The ratio of 6'-SL and 3'-SL (1.77) in goat colostrum was similar to that in human colostrum (1.68), followed by bovine colostrum (0.13). In terms of changes of eight oligosaccharides over lactation, they all decreased with the increase of lactation in bovine and goat milk; however, α3'-GL, 2'-FL, and 3-FL increased in camel species, and LNT increased first and then decreased over lactation in human milk. This study provides a better understanding of the variation of milk oligosaccharides related to lactation and species.


Assuntos
Camelus , Leite , Humanos , Gravidez , Feminino , Bovinos , Animais , Lactação , Colostro , Leite Humano , Cabras , Oligossacarídeos
3.
J Ethnopharmacol ; 296: 115517, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35777608

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Rhizoma Dioscoreae (RD) is the rhizome of Dioscorea opposita Thunb., a traditional Chinese medicine, which can treat hypertension, diabetes, cerebral vasospasm headache and Alzheimer's disease. Meanwhile, RD is the main component of Liuwei Dihuang pill, a Chinese patent medicine. Rhizoma Dioscoreae polysaccharides (RDPS) are the primary active ingredient of RD. Modern medical research confirmed RDPS has multiple pharmacological effects, including neuroprotection, immunoregulation, antioxidant effect in many organs. The primary ischemia/hypoxia injury and secondary reperfusion injury are mainly caused by oxidative stress, which caused by hypoxia, such as free radical generation, energy metabolism disorder, intracellular calcium overload, excitatory amino acid release and inflammatory reaction. AIM OF THE STUDY: We have investigated the pharmacodynamic effect of RDPS on cerebral ischemia-reperfusion (IR) injury in rats and the possible mechanism in vitro. MATERIALS AND METHODS: The pharmacodynamic effect of RDPS on IR injury in rats was studied by the construction of the occlusion of middle cerebral artery (MCAO) model, measuring the volume of cerebral infarct area, the content of oxidation index, inflammatory cytokines, and the expression of CaMMKß in brain tissue. The in vitro study was explored by oxygen-glucose deprivation/glycogen reoxygenation (OGD/R) model, construction of the CaMMKß interference sequence, measuring the expression of CaMMKß in BV2 cells before and after inhibition of CaMMKß, and the influence of RDPS on Nrf2/HO-1 signal pathway, in order to investigate the possible mechanism. RESULTS: Compared with the model group, the present study showed that RDPS with high-dose and low-dose groups could significantly reduce the volume of cerebral infarction. The content of MDA decreased and the activities of GSH and SOD increased in the two dose groups of RDPS. We confirmed that after RDPS treatment, the levels of IL-6, IL-1 ß and TNF-α in brain tissue were lower than those in model group, and the expression of CaMMKß in brain tissue of rats decreased in the model group, but increased in the groups of RDPS. In the in vitro study, compared with the control group, RDPS could regulate the OGD/R-induced apoptosis of BV2 cells and increase the level of CaMMKß, Nrf2 and HO-1 induced by OGD/R. To our surprise, these therapeutic effects are no longer present after the inhibition of CaMMKß protein. The activity of BV2 induced by OGD/R could not be enhanced by RDPS after the inhibition of CaMMKß protein. CONCLUSIONS: RDPS has the pharmacodynamic effect in IR injury, which reduce the area of cerebral infarction, up-regulate the activity of anti-oxidant kinase, and down-regulate the inflammatory cytokine. Additionally, RDPS could affect the activation of Nrf2/HO-1 signaling pathway by regulating the expression of CaMMKß. Our observations justify the RDPS could be a new strategy for IR injury therapy, and the mechanism may be related to the improvement of antioxidant enzyme activity and inhibition of inflammatory reaction.


Assuntos
Isquemia Encefálica , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Animais , Antioxidantes/farmacologia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Citocinas/metabolismo , Glucose/metabolismo , Hipóxia/tratamento farmacológico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Rizoma/metabolismo
4.
J Food Biochem ; 45(10): e13910, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34426979

RESUMO

Tea is a worldwide popular drink with high nutritional and medicinal values as it is rich in nutrients, such as polyphenols, amino acids, vitamins, glycosides, and so on. Among them, tea polyphenols (TPs) are the current research hotspot. TPs are known to have multiple biological activities such as anti-oxidation, anti-tumor, anti-inflammation, anti-bacteria, lowering lipid, and liver protection. By reviewing a large number of literatures, we explained the mechanism of TPs exerting biological activity and a wide range of applications. We also discussed the deficiencies and development potential of TPs, in order to provide theoretical reference and scientific basis for the subsequent development and utilization of TPs. PRACTICAL APPLICATIONS: We summarized the bioactivity mechanisms of TPs in anti-tumor, anti-oxidation, antibacterial, anti-inflammatory, lipid-lowering, and liver protection, focused on its application fields in food and medicine, and discussed the deficiency and development potential of current research on TPs, so as to provide a certain convenient way for scholars studying TPs. It is expected to contribute to the subsequent discovery of biological activity and the broadening of the field of TPs.


Assuntos
Neoplasias , Polifenóis , Anti-Inflamatórios , Humanos , Fígado , Neoplasias/tratamento farmacológico , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Chá
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA