Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Rep Med ; 4(5): 101019, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37060903

RESUMO

Derivatives of the Chinese traditional medicine indirubin have shown potential for the treatment of cancer through a range of mechanisms. This study investigates the impact of 6'-bromoindirubin-3'-acetoxime (BiA) on immunosuppressive mechanisms in glioblastoma (GBM) and evaluates the efficacy of a BiA nanoparticle formulation, PPRX-1701, in immunocompetent mouse GBM models. Transcriptomic studies reveal that BiA downregulates immune-related genes, including indoleamine 2,3-dioxygenase 1 (IDO1), a critical enzyme in the tryptophan-kynurenine-aryl hydrocarbon receptor (Trp-Kyn-AhR) immunosuppressive pathway in tumor cells. BiA blocks interferon-γ (IFNγ)-induced IDO1 protein expression in vitro and enhances T cell-mediated tumor cell killing in GBM stem-like cell co-culture models. PPRX-1701 reaches intracranial murine GBM and significantly improves survival in immunocompetent GBM models in vivo. Our results indicate that BiA improves survival in murine GBM models via effects on important immunotherapeutic targets in GBM and that it can be delivered efficiently via PPRX-1701, a nanoparticle injectable formulation of BiA.


Assuntos
Glioblastoma , Animais , Camundongos , Glioblastoma/tratamento farmacológico , Triptofano/farmacologia , Cinurenina , Oximas/farmacologia , Oximas/uso terapêutico
2.
Environ Sci Technol ; 52(6): 3642-3651, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29516734

RESUMO

Thermal treatment of soil and groundwater may provide an in situ source of soluble organic compounds and hydrogen (H2) that could stimulate microbial reductive dechlorination (MRD) at sites impacted by chlorinated solvents. The objectives of this study were to identify and quantify the release of electron donors and fermentable precursors during soil heating and to estimate availability of these compounds following thermal treatment. Fourteen solid materials containing <0.01 to 63.81 wt % organic carbon (OC) were incubated at 30, 60, or 90 °C for up to 180 d, leading to the release of direct electron donors (i.e., H2 and acetate) and fermentable volatile fatty acids (VFAs). Total VFA release ranged from 5 ± 0 × 10-9 carbon per gram solid (mol C/gs) during 30 °C incubation of quartz sand to 820 ± 50 × 10-6 mol C/gs during 90 °C incubation of humic acid, and was positively impacted by incubation time, temperature, and solid-phase OC content. H2 gas was detected at a maximum of 180 ± 50 × 10-9 mol H2/gs, accounting for less than 0.3% of reducing equivalents associated with VFAs released under the same conditions. These findings will allow for more reliable prediction of substrate release during thermal treatment, supporting the implementation of coupled thermal and biological remediation strategies.


Assuntos
Água Subterrânea , Solo , Biodegradação Ambiental , Elétrons , Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA