Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 396(8): 2825-32, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19941133

RESUMO

A need for analysis techniques, complementary to secondary ion mass spectrometry (SIMS), for depth profiling dopants in silicon for ultra shallow junction (USJ) applications in CMOS technologies has recently emerged following the difficulties SIMS is facing there. Grazing incidence X-ray fluorescence (GIXRF) analysis in the soft X-ray range is a high-potential tool for this purpose. It provides excellent conditions for the excitation of the B-K and the As-L(iii,ii) shells. The X-ray standing wave (XSW) field associated with GIXRF on flat samples is used here as a tunable sensor to obtain information about the implantation profile because the in-depth changes of the XSW intensity are dependent on the angle of incidence. This technique is very sensitive to near-surface layers and is therefore well suited for the analysis of USJ distributions. Si wafers implanted with either arsenic or boron at different fluences and implantation energies were used to compare SIMS with synchrotron radiation-induced GIXRF analysis. GIXRF measurements were carried out at the laboratory of the Physikalisch-Technische Bundesanstalt (PTB) at the electron storage ring BESSY II using monochromatized undulator radiation of well-known radiant power and spectral purity. The use of an absolutely calibrated energy-dispersive detector for the acquisition of the B-Kalpha and As-Lalpha fluorescence radiation enabled the absolute determination of the total retained dose. The concentration profile was obtained by ab initio calculation and comparison with the angular measurements of the X-ray fluorescence.

2.
Anal Bioanal Chem ; 382(8): 1958-64, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16034618

RESUMO

A direct analysis procedure for the determination of trace impurities of Ca, V, Cr, Mn, Fe, Ni, Cu, Zn and Ga in Al2O3 ceramic powders by total reflection X-ray fluorescence spectrometry (TXRF) is described. The powders were analysed in the form of slurries containing 1-10 mg mL(-1) of powder. The use of the procedure in the case of powders with differing grain size and for different slurry concentrations was investigated. Three different quantification possibilities were compared, namely the use of Al as a matrix component, the use of Fe as a trace element contained in the sample or of Co added in concentrations of 200 microg g(-1) as internal standard. The homogeneity of elemental distributions in sample layers deposited on the TXRF quartz carriers by evaporating 5 microL of the 10 mg mL(-1) slurries was studied by scanning the 4- to 5-mm-diameter spots of two samples by synchrotron radiation TXRF at Hasylab. For powders with differing graininess but mainly finer than about a few 10 microm, no systematic influence of the grain size on the accuracy of the determinations of Ca, V, Fe, Ni, Cu and Zn could be observed. The measurement precision, however, seemed to be limited by inhomogeneous distributions of the trace elements in the samples as testified by the synchrotron radiation TXRF scans. Detection limits of the developed TXRF procedure for Ca, V, Cr, Mn, Fe, Ni, Cu, Zn and Ga were found to be in the 0.3-7 microg g(-1) range and were shown to increase slightly with the grain size of the samples. Quantification using Al (matrix) as internal standard led to systematically higher values out of the accuracy required, whereas the other two approaches in all cases led to reliable results.


Assuntos
Óxido de Alumínio/análise , Óxido de Alumínio/química , Espectrometria de Fluorescência/métodos , Espectrometria por Raios X/métodos , Oligoelementos/análise , Cálcio/análise , Gálio/análise , Tamanho da Partícula , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA