Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neurotox Res ; 40(6): 1924-1936, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36441450

RESUMO

Neonatal exposure to general anesthetics has been associated with neurotoxicity and morphologic changes in the developing brain. Isoflurane is a volatile anesthetic widely used in pediatric patients to induce general anesthesia, analgesia, and perioperative sedation. In the present study, we investigated the effects of a single neonatal isoflurane (3% in oxygen, 2 h) exposure in rats at postnatal day (PND) 7, in short-term (24 h - PND8) and long-term (adulthood) protocols. In PND8, ex vivo analysis of hippocampal and frontal cortex slices evaluated cell viability and susceptibility to in vitro glutamate challenge. In adult rats, behavioral parameters related to anxiety-like behavior, short-term memory, and locomotor activity (PND60-62) and ex vivo analysis of cell viability, membrane permeability, glutamate uptake, and susceptibility to in vitro glutamate challenge in hippocampal and cortical slices from PND65. A single isoflurane (3%, 2 h) exposure at PND7 did not acutely alter cell viability in cortical and hippocampal slices of infant rats (PND8) per se and did not alter slice susceptibility to in vitro glutamate challenge. In rat's adulthood, behavioral analysis revealed that the neonatal isoflurane exposure did not alter anxiety-like behavior and locomotor activity (open field and rotarod tests). However, isoflurane exposure impaired short-term memory evaluated in the novel object recognition task. Ex vivo analysis of brain slices showed isoflurane neonatal exposure selectively decreased cell viability and glutamate uptake in cortical slices, but it did not alter hippocampal slice viability or glutamate uptake (PND65). Isoflurane exposure did not alter in vitro glutamate-induced neurotoxicity to slices, and isoflurane exposure caused no significant long-term damage to cell membranes in hippocampal or cortical slices. These findings indicate that a single neonatal isoflurane exposure did not promote acute damage; however, it reduced cortical, but not hippocampal, slice viability and glutamate uptake in the adulthood. Additionally, behavioral analysis showed neonatal isoflurane exposure induces short-term recognition memory impairment, consolidating that neonatal exposure to volatile anesthetics may lead to behavioral impairment in the adulthood, although it may damage brain regions differentially.


Assuntos
Anestésicos Inalatórios , Anestésicos , Isoflurano , Ratos , Animais , Isoflurano/toxicidade , Ácido Glutâmico/metabolismo , Memória de Curto Prazo , Sobrevivência Celular , Hipocampo , Lobo Frontal/metabolismo , Córtex Cerebral/metabolismo , Anestésicos Inalatórios/toxicidade
2.
Neurotox Res ; 34(3): 649-659, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29968149

RESUMO

The neonatal exposure to general anesthetics has been associated with neuronal apoptosis and dendritic spines morphologic changes in the developing brain. Ketamine, a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, is widely used in pediatric patients to induce general anesthesia, analgesia, and perioperative sedation. In the present study, we investigated short- and long-term effects of a single ketamine (20 mg/kg, s.c.) neonatal exposure at postnatal day 7 in rats on the hippocampal and frontal cortical cellular viability. Additionally, putative neurochemical alterations and neurobehavioral impairments were evaluated in the adulthood. Ketamine neonatal administration selectively decreased cellular viability in the hippocampus, but not in the frontal cortex, 24 h after the treatment. Interestingly, a single ketamine neonatal exposure prevented the vulnerability to glutamate-induced neurotoxicity in the frontal cortex of adult rats. No short- or long-term damage to cellular membranes, as an indicative of cell death, was observed in hippocampal or cortical slices. However, ketamine induced a long-term increase in hippocampal glutamate uptake. Regarding behavioral analysis, neonatal ketamine exposure did not alter locomotor activity and anxiety-related parameters evaluated in the open-field test. However, ketamine administration disrupted the hippocampal-dependent object recognition ability of adult rats, while improved the motor coordination addressed on the rotarod. These findings indicate that a single neonatal ketamine exposure induces a short-term reduction in the hippocampal, but not in cortical, cellular viability, and long-term alterations in hippocampal glutamate transport, improvement on motor performance, and short-term recognition memory impairment.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/metabolismo , Comportamento Animal/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/toxicidade , Lobo Frontal/metabolismo , Hipocampo/metabolismo , Ketamina/toxicidade , Animais , Animais Recém-Nascidos , Comportamento Exploratório/efeitos dos fármacos , Feminino , Ácido Glutâmico/farmacocinética , Ácido Glutâmico/toxicidade , Técnicas In Vitro , Masculino , Ratos , Ratos Wistar , Reconhecimento Psicológico/efeitos dos fármacos , Natação , Trítio/farmacocinética
3.
Pharmacology ; 101(5-6): 290-297, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29587275

RESUMO

BACKGROUND/AIMS: Several guidelines for neuropathic pain management and various effective drugs are available; however, neuropathic pain remains undertreated. This retrospective study aimed to evaluate the efficacy of topical capsaicin 8% in peripheral neuropathic pain in a routine clinical setting. METHODS: Therapeutic efficacy was evaluated through pain intensity, using numerical pain rating scale at baseline and 7-14 days after each treatment, and using pain treatment area (PTA) assessed immediately before each treatment. RESULTS: A total of 43 patients with either post-herpetic neuralgia or post-traumatic/post-surgical neuropathic pain were enrolled. The median percentage reduction in numerical pain rating scale score and in PTA was -40.0 (-50.0 to -33.3; 95% CI, bootstrap) and -35.1 (-50.9 to 3.4; 95% CI, bootstrap), respectively. Pain intensity and PTA were equally improved and reduced in both treated conditions. CONCLUSION: This study suggests that topical capsaicin 8% reduces peripheral neuropathic pain as well as treatment pain area.


Assuntos
Capsaicina/administração & dosagem , Neuralgia Pós-Herpética/tratamento farmacológico , Neuralgia/tratamento farmacológico , Fármacos do Sistema Sensorial/administração & dosagem , Administração Cutânea , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Medição da Dor , Estudos Retrospectivos , Adesivo Transdérmico , Resultado do Tratamento
4.
CNS Neurosci Ther ; 23(2): 119-126, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27762079

RESUMO

INTRODUCTION: We recently showed that a single high dose of methamphetamine (METH) induces a persistent frontal cortical monoamine depletion that is accompanied by helpless-like behavior in mice. However, brain metabolic alterations underlying both neurochemical and mood alterations remain unknown. AIMS: Herein, we aimed at characterizing frontal cortical metabolic alterations associated with early negative mood behavior triggered by METH. Adult C57BL/6 mice were injected with METH (30 mg/kg, i.p.), and their frontal cortical metabolic status was characterized after probing their mood and anxiety-related phenotypes 3 days postinjection. RESULTS: Methamphetamine induced depressive-like behavior, as indicated by the decreased grooming time in the splash test and by a transient decrease in sucrose preference. At this time, METH did not alter anxiety-like behavior or motor functions. Depolarization-induced glucose uptake was reduced in frontocortical slices from METH-treated mice compared to controls. Consistently, astrocytic glucose transporter (GluT1) density was lower in the METH group. A proton high rotation magic angle spinning (HRMAS) spectroscopic approach revealed that METH induced a significant decrease in N-acetyl aspartate (NAA) and glutamate levels, suggesting that METH decreased neuronal glutamatergic function in frontal cortex. CONCLUSIONS: We report, for the first time, that a single METH injection triggers early self-care and hedonic deficits and impairs frontal cortical energetics in mice.


Assuntos
Anedonia/efeitos dos fármacos , Lesões Encefálicas/induzido quimicamente , Lesões Encefálicas/patologia , Estimulantes do Sistema Nervoso Central/toxicidade , Córtex Cerebral/efeitos dos fármacos , Metanfetamina/toxicidade , Animais , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Córtex Cerebral/patologia , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Preferências Alimentares/efeitos dos fármacos , Glucose/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 3/metabolismo , Ácido Glutâmico/metabolismo , Asseio Animal/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos
5.
Neurotoxicol Teratol ; 34(5): 522-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22884891

RESUMO

Methamphetamine leads to functional changes in basal ganglia that are linked to impairment in motor activity. Previous studies from our group and others have shown that a single high-methamphetamine injection induces striatal dopaminergic changes in rodents. However, striatal glutamatergic, GABAergic and serotoninergic changes remain elusive under this methamphetamine regimen. Moreover, nothing is known about the participation of the receptor for advanced glycation end-products (RAGE), which is overexpressed upon synaptic dysfunction and glial response, on methamphetamine-induced striatal dysfunction. The aim of this work was to provide an integrative characterization of the striatal changes in amino acids, monoamines and astroglia, as well as in the RAGE levels, and the associated motor activity profile of C57BL/6 adult mice, 72 h after a single-high dose of methamphetamine (30 mg/kg, i.p.). Our findings indicate, for the first time, that methamphetamine decreases striatal glutamine, glutamate and GABA levels, as well as glutamine/glutamate and GABA/glutamate ratios, while serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) levels remain unchanged. This methamphetamine regimen also produced dopaminergic terminal degeneration in the striatum, as evidenced by dopamine and tyrosine hydroxylase depletion. Consistently, methamphetamine decreased the locomotor activity of mice, in the open field test. In addition, increased levels of glutamine synthase and glial fibrillary acidic protein were observed. Nevertheless, methamphetamine failed to change RAGE levels. Our results show that acute methamphetamine intoxication induces pronounced changes in the striatal glutamatergic/GABAergic and dopaminergic homeostasis, along with astrocyte activation. These neurochemical and glial alterations are accompanied by impairment in locomotor activity.


Assuntos
Corpo Estriado/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Homeostase/efeitos dos fármacos , Metanfetamina/toxicidade , Ácido gama-Aminobutírico/metabolismo , Animais , Western Blotting , Cromatografia Líquida de Alta Pressão , Corpo Estriado/metabolismo , Dopamina/metabolismo , Glutamina/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Ácido Hidroxi-Indolacético/metabolismo , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Serotonina/metabolismo
6.
Ann N Y Acad Sci ; 1139: 212-21, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18991867

RESUMO

The glutamate-glutamine cycle between neurons and glia is tightly related to excitatory glutamatergic and inhibitory GABAergic regulation in brain. The role of this neuron-astrocyte cross-talk on the neurotoxicity induced by amphetamines is not understood. Also, the impact of neurotoxic doses of amphetamines on the balance between glutamatergic and GABAergic circuits is largely unknown. The aim of this work was to assess the acute effect of a neurotoxic regimen of amphetamine (AMPH) on glutamine (GLN, an astrocytic marker) levels and on glutamine/glutamate (an index for glutamate-glutamine cycle) and GABA/glutamate ratios in rat brain. Sprague-Dawley rats were sacrificed 4 and 24 h after a single-dose regimen of AMPH (30 mg/kg, i.p.), and the caudate-putamen (CPu), frontal cortex (FC), and hippocampus (Hp) were dissected for analysis of glutamate (GLU), gamma-aminobutyric acid (GABA), and GLN. The total content of these amino acids was measured using a microbore HPLC electrochemical detector. Although AMPH did not change GLU levels, it increased both GLN content and GLN/GLU ratio (160-469%) at 4 h, but not at 24 h, in all regions after injection. Striatal GABA levels and GABA/GLU ratio were increased (46 and 100%, respectively) at 24 h. In hippocampus the GABA/GLU increase (60%) occurred as early as 4 h after treatment. To the contrary, AMPH exerted no effect in GABA/GLU balance in frontal cortex. These data strongly suggest that this neurotoxic AMPH regimen provoked an early increase in the glutamate-glutamine cycle between neurons and glia. This increase may ultimately lead to an upregulation of the inhibitory system as a compensatory response.


Assuntos
Anfetamina/farmacologia , Encéfalo , Estimulantes do Sistema Nervoso Central/farmacologia , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Animais , Astrócitos/metabolismo , Encéfalo/anatomia & histologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Núcleo Caudado/metabolismo , Lobo Frontal/metabolismo , Hipocampo/metabolismo , Masculino , Neurônios/metabolismo , Putamen/metabolismo , Ratos , Ratos Sprague-Dawley , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA