Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Radiat Oncol Biol Phys ; 100(4): 1016-1025, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29485043

RESUMO

PURPOSE: There is mounting evidence that, in addition to angiogenesis, hypoxia-induced inflammation via the hypoxia-inducible factor 1α (HIF-1α)-CXC chemokine receptor 4 (CXCR4) pathway may contribute to the pathogenesis of late-onset, irradiation-induced necrosis. This study investigates the mitigative efficacy of an HIF-1α inhibitor, topotecan, and a CXCR4 antagonist, AMD3100, on the development of radiation necrosis (RN) in an intracranial mouse model. METHODS AND MATERIALS: Mice received a single-fraction, 50-Gy dose of hemispheric irradiation from the Leksell Gamma Knife Perfexion and were then treated with either topotecan, an HIF-1α inhibitor, from 1 to 12 weeks after irradiation, or AMD3100, a CXCR4 antagonist, from 4 to 12 weeks after irradiation. The onset and progression of RN were monitored longitudinally via noninvasive, in vivo magnetic resonance imaging (MRI) from 4 to 12 weeks after irradiation. Conventional hematoxylin-eosin staining and immunohistochemistry staining were performed to evaluate the treatment response. RESULTS: The progression of brain RN was significantly mitigated for mice treated with either topotecan or AMD3100 compared with control animals. MRI-derived lesion volumes were significantly smaller for both of the treated groups, and histologic findings correlated well with the MRI data. By hematoxylin-eosin staining, both treated groups demonstrated reduced irradiation-induced tissue damage compared with controls. Furthermore, immunohistochemistry results revealed that expression levels of vascular endothelial growth factor, CXC chemokine ligand 12, CD68, CD3, and tumor necrosis factor α in the lesion area were significantly lower in treated (topotecan or AMD3100) brains versus control brains, while ionized calcium-binding adapter molecule 1 (Iba1) and HIF-1α expression was similar, though somewhat reduced. CXCR4 expression was reduced only in topotecan-treated mice, while interleukin 6 expression was unaffected by either topotecan or AMD3100. CONCLUSIONS: By reducing inflammation, both topotecan and AMD3100 can, independently, mitigate the development of RN in the mouse brain. When combined with first-line, antiangiogenic treatment, anti-inflammation therapy may provide an adjuvant therapeutic strategy for clinical, postirradiation management of tumors, with additional benefits in the mitigation of RN development.


Assuntos
Encéfalo/patologia , Compostos Heterocíclicos/uso terapêutico , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Lesões Experimentais por Radiação/prevenção & controle , Receptores CXCR4/antagonistas & inibidores , Topotecan/uso terapêutico , Animais , Benzilaminas , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos da radiação , Ciclamos , Modelos Animais de Doenças , Progressão da Doença , Feminino , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C , Necrose/diagnóstico por imagem , Necrose/etiologia , Necrose/patologia , Necrose/prevenção & controle , Lesões Experimentais por Radiação/diagnóstico por imagem , Lesões Experimentais por Radiação/patologia
2.
Nanomedicine (Lond) ; 9(8): 1209-22, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24063415

RESUMO

AIM: We report a magneto-fluorescent theranostic nanocomplex targeted to neutrophil gelatinase-associated lipocalin (NGAL) for imaging and therapy of pancreatic cancer. MATERIALS & METHODS: Gold nanoshells resonant at 810 nm were encapsulated in silica epilayers doped with iron oxide and the near-infrared (NIR) dye indocyanine green, resulting in theranostic gold nanoshells (TGNS), which were subsequently conjugated with antibodies targeting NGAL in AsPC-1-derived xenografts in nude mice. RESULTS: Anti-NGAL-conjugated TGNS specifically targeted pancreatic cancer cells in vitro and in vivo providing contrast for both NIR fluorescence and T2-weighted MRI with higher tumor contrast than can be obtained using long-circulating, but nontargeted, PEGylated nanoparticles. The nanocomplexes also enabled highly specific cancer cell death via NIR photothermal therapy in vitro. CONCLUSION: TGNS with embedded NIR and magnetic resonance contrasts can be specifically targeted to pancreatic cancer cells with expression of early disease marker NGAL, and enable molecularly targeted imaging and photothermal therapy.


Assuntos
Ouro/uso terapêutico , Nanoconchas/uso terapêutico , Pâncreas/patologia , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/terapia , Proteínas de Fase Aguda/metabolismo , Animais , Linhagem Celular Tumoral , Meios de Contraste/química , Meios de Contraste/uso terapêutico , Sistemas de Liberação de Medicamentos , Feminino , Corantes Fluorescentes/química , Corantes Fluorescentes/uso terapêutico , Ouro/química , Humanos , Hipertermia Induzida , Lipocalina-2 , Lipocalinas/metabolismo , Imageamento por Ressonância Magnética , Imãs/química , Camundongos Nus , Nanoconchas/química , Proteínas Oncogênicas/metabolismo , Imagem Óptica , Neoplasias Pancreáticas/patologia , Fototerapia
3.
Mol Cancer Ther ; 9(4): 1028-38, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20371708

RESUMO

Overexpression of the human epidermal growth factor receptor (HER) family has been implicated in ovarian cancer because of its participation in signaling pathway regulating cellular proliferation, differentiation, motility, and survival. Currently, effective diagnostic and therapeutic schemes are lacking for treating ovarian cancer, and consequently ovarian cancer has a high mortality rate. Although HER2 receptor expression does not usually affect the survival rates of ovarian cancer to the same extent as in breast cancer, it can be used as a docking site for directed nanotherapies in cases with de novo or acquired chemotherapy resistance. In this study, we have exploited a novel gold nanoshell-based complex (nanocomplex) for targeting, dual modal imaging, and photothermal therapy of HER2-overexpressing and drug-resistant ovarian cancer OVCAR3 cells in vitro. The nanocomplexes are engineered to simultaneously provide contrast as fluorescence optical imaging probe and a magnetic resonance imaging agent. Immunofluorescence staining and magnetic resonance imaging successfully show that nanocomplex-anti-HER2 conjugates specifically bind to OVCAR3 cells as opposed to the control, MDA-MB-231 cells, which have low HER2 expression. In addition, nanocomplexes targeted to OVCAR3 cells, when irradiated with near-IR laser, result in selective destruction of cancer cells through photothermal ablation. We also show that near-IR light therapy and the nanocomplexes by themselves are noncytotoxic in vitro. To the best of our knowledge, this is the first successful integration of dual modal bioimaging with photothermal cancer therapy for treatment of ovarian cancer. Based on their efficacy in vitro, these nanocomplexes are highly promising for image-guided photothermal therapy of ovarian cancer, as well as other HER2-overexpressing cancers. Mol Cancer Ther; 9(4); 1028-38. (c)2010 AACR.


Assuntos
Sondas Moleculares , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/terapia , Temperatura , Técnicas de Ablação , Morte Celular , Linhagem Celular Tumoral , Meios de Contraste , Feminino , Humanos , Imageamento por Ressonância Magnética , Microscopia de Fluorescência , Nanoconchas , Neoplasias Ovarianas/patologia , Receptor ErbB-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA