Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 27(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35458621

RESUMO

Culture of plant cells or tissues is a scalable, sustainable, and environmentally friendly approach to obtain extracts and secondary metabolites of uniform quality that can be continuously supplied in controlled conditions, independent of geographical and seasonal variations, environmental factors, and negative biological influences. In addition, tissues and cells can be extracted/obtained from the by-products of other industrial cultivations such as that of Lavandula angustifolia Miller (L. angustifolia), which is largely cultivated for the collection of flowers. Given that, an extract rich in rosmarinic acid was biotechnologically produced starting from cell suspension of L. angustifolia, which was then loaded in hyalurosomes, special phospholipid vesicles enriched with sodium hyaluronate, which in turn are capable of both immobilizing and stabilizing the system. These vesicles have demonstrated to be good candidates for skin delivery as their high viscosity favors their residence at the application site, thus promoting their interaction with the skin components. The main physico-chemical and technological characteristics of vesicles (i.e., mean diameter, polydispersity index, zeta potential and entrapment efficiency of extract in vesicles) were measured along with their biological properties in vitro: biocompatibility against fibroblasts and ability to protect the cells from oxidative stress induced by hydrogen peroxide. Overall, preliminary results disclosed the promising properties of obtained formulations to be used for the treatment of skin diseases associated with oxidative stress and inflammation.


Assuntos
Lavandula , Antioxidantes/farmacologia , Cinamatos , Depsídeos/farmacologia , Lavandula/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ácido Rosmarínico
2.
Antioxidants (Basel) ; 10(7)2021 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-34356342

RESUMO

A total green nanotechnological nasal spray has been manufactured and proposed as an alternative treatment of rhinitis and rhinosinusitis. It was obtained by combining the strengthening effect of liposomes on barrier function, the hydrating and lubricating properties of sodium hyaluronan and the anti-inflammatory and antioxidant activities of the extract of Zingiber officinalis. To this purpose, the extract was loaded in special phospholipid vesicles immobilized with hyaluronic acid (hyalurosomes), which were further enriched with glycerol in the water phase. Liposomes and glycerosomes were prepared as well and used as reference. Vesicles were oligolamellar and multicompartment, as confirmed by cryogenic transmission electron microscopy (cryo-TEM) observation, small in size (~140 nm) and negatively charged (~-23 mV). Spray characteristics were evaluated by using the Spraytec® and instant images, from which the plume angle was measured. The range of the droplet size distribution and the narrow spray angle obtained suggest a good nebulization and a possible local deposition in the nasal cavity. In vitro studies performed by using human keratinocytes confirmed the high biocompatibility of vesicles and their ability to effectively counteract oxidative damage on cells induced by hydrogen peroxide. The overall collected data suggest that our vesicles are suitable as nasal spray.

3.
Biomed Pharmacother ; 142: 111959, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34333288

RESUMO

The present study is aimed at valorizing grape pomace, one of the most abundant winery-making by-products of the Mediterranean area, through the extraction of the main bioactive compounds from the skin of grape pomace and using them to manufacture innovative nanoformulations capable of both avoiding skin damages and promoting skincare. The phytochemicals were recovered through maceration in hydroethanolic solution. Catechin, quercetin, fisetin and gallic acid, which are known for their antioxidant power, were detected as the main compounds of the extract. Liposomes and phospholipid vesicles modified with glycerol or Montanov 82® or a combination of both, were used as carriers for the extract. The vesicles were small (~183 nm), slightly polydispersed (PI ≥ 0.28), and highly negatively charged (~-50 mV). The extract was loaded in high amounts in all vesicles (~100%) irrespective of their composition. The antioxidant activity of the extract, measured by using the DPPH (2,2-Diphenyl-1-picrylhydrazyl) test, was 84 ± 1%, and slightly increased when loaded into the vesicles (~89%, P < 0.05). The grape pomace extract loaded vesicles were highly biocompatible and able to protect fibroblasts (3T3) from the oxidative stress induced by hydrogen peroxide.


Assuntos
Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Pele/efeitos dos fármacos , Vitis/química , Células 3T3 , Animais , Antioxidantes/administração & dosagem , Antioxidantes/isolamento & purificação , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Peróxido de Hidrogênio , Lipossomos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Fosfolipídeos/química , Compostos Fitoquímicos/administração & dosagem , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Pele/patologia , Vinho/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA