Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
2.
Front Bioeng Biotechnol ; 10: 934997, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466352

RESUMO

Osteoarthritis is a very disabling disease that can be treated with both non-pharmacological and pharmacological approaches. In the last years, pharmaceutical-grade chondroitin sulfate (CS) and glucosamine emerged as symptomatic slow-acting molecules, effective in pain reduction and improved function in patients affected by osteoarthritis. CS is a sulfated glycosaminoglycan that is currently produced mainly by extraction from animal tissues, and it is commercialized as a pharmaceutical-grade ingredient and/or food supplement. However, public concern on animal product derivatives has prompted the search for alternative non-extractive production routes. Thus, different approaches were established to obtain animal-free natural identical CS. On the other hand, the unsulfated chondroitin, which can be obtained via biotechnological processes, demonstrated promising anti-inflammatory properties in vitro, in chondrocytes isolated from osteoarthritic patients. Therefore, the aim of this study was to explore the potential of chondroitin, with respect to the better-known CS, in an in vivo mouse model of knee osteoarthritis. Results indicate that the treatment with biotechnological chondroitin (BC), similarly to CS, significantly reduced the severity of mechanical allodynia in an MIA-induced osteoarthritic mouse model. Decreased cartilage damage and a reduction of inflammation- and pain-related biochemical markers were also observed. Overall, our data support a beneficial activity of biotechnological unsulfated chondroitin in the osteoarthritis model tested, thus suggesting BC as a potential functional ingredient in pharmaceuticals and nutraceuticals with the advantage of avoiding animal tissue extraction.

3.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36142579

RESUMO

Metabolic bone disease of prematurity (MBD) is a condition of reduced bone mineral content (BMC) compared to that expected for gestational age (GA). Preterm birth interrupts the physiological process of calcium (Ca) and phosphorus (P) deposition that occurs mostly in the third trimester of pregnancy, leading to an inadequate bone mineralization during intrauterine life (IUL). After birth, an insufficient intake of Ca and P carries on this alteration, resulting in overt disease. If MBD is often a self-limited condition, in some cases it could hesitate the permanent alteration of bone structures with growth faltering and failure to wean off mechanical ventilation due to excessive chest wall compliance. Despite advances in neonatal intensive care, MBD is still frequent in preterm infants, with an incidence of 16−23% in very-low-birth-weight (VLBW, birth weight <1500 g) and 40−60% in extremely low-birth-weight (ELBW, birth weight <1000 g) infants. Several risk factors are associated with MBD (e.g., malabsorption syndrome, parenteral nutrition (PN), pulmonary bronchodysplasia (BPD), necrotizing enterocolitis (NEC), and some chronic medications). The aim of this study was to evaluate the rate of MBD in a cohort of VLBWI and the role of some risk factors. We enrolled 238 VLBWIs (107 male). 52 subjects were classified as increased risk (G1) and 186 as standard risk (G2) according to serum alkaline phosphatase (ALP) and phosphorus (P) levels. G1 subjects have lower GA (p < 0.01) and BW (p < 0.001). Moreover, they need longer PN support (p < 0.05) and invasive ventilation (p < 0.01). G1 presented a higher rate of BPD (p = 0.026). At linear regression analysis, BW and PN resulted as independent predictor of increased risk (p = 0.001, p = 0.040, respectively). Preventive strategies are fundamental to prevent chronic alteration in bone structures and to reduce the risk of short stature. Screening for MBD based on serum ALP could be helpful in clinical practice to identify subjects at increased risk.


Assuntos
Doenças Ósseas Metabólicas , Enterocolite Necrosante , Nascimento Prematuro , Fosfatase Alcalina , Peso ao Nascer , Doenças Ósseas Metabólicas/epidemiologia , Doenças Ósseas Metabólicas/etiologia , Doenças Ósseas Metabólicas/prevenção & controle , Cálcio , Feminino , Humanos , Incidência , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Recém-Nascido de muito Baixo Peso , Masculino , Fósforo , Gravidez , Fatores de Risco
4.
Adv Sci (Weinh) ; 8(21): e2100627, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34486241

RESUMO

Optical stimulation technologies are gaining great consideration in cardiology, neuroscience studies, and drug discovery pathways by providing control over cell activity with high spatio-temporal resolution. However, this high precision requires manipulation of biological processes at genetic level concealing its development from broad scale application. Therefore, translating these technologies into tools for medical or pharmacological applications remains a challenge. Here, an all-optical nongenetic method for the modulation of electrogenic cells is introduced. It is demonstrated that plasmonic metamaterials can be used to elicit action potentials by converting near infrared laser pulses into stimulatory currents. The suggested approach allows for the stimulation of cardiomyocytes and neurons directly on commercial complementary metal-oxide semiconductor microelectrode arrays coupled with ultrafast pulsed laser, providing both stimulation and network-level recordings on the same device.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Raios Infravermelhos , Miócitos Cardíacos/fisiologia , Nanoestruturas/toxicidade , Neurônios/fisiologia , Potenciais de Ação/efeitos da radiação , Animais , Linhagem Celular , Humanos , Metais/química , Camundongos , Microeletrodos , Miócitos Cardíacos/citologia , Nanoestruturas/química , Neurônios/citologia , Porosidade , Ratos , Semicondutores , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA