Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Talanta ; 261: 124666, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37210918

RESUMO

Recently, essential oils (EO) have gained a lot of interest for use as antifungal agent in food and agricultural industry and extensive research is ongoing to understand their mode of action. However, the exact mechanism is not yet elucidated. Here, we integrated spectral unmixing and Raman microspectroscopy imaging to unveil the antifungal mechanism of green tea EO based nanoemulsion (NE) against Magnaporthe oryzae. The dramatic change in protein, lipid, adenine, and guanine bands indicate that NE has a significant impact on the protein, lipid and metabolic processes of purine. The results also demonstrated that the NE treatment caused damage to fungal hyphae by inducing a physical injury leading to cell wall damage and loss of integrity. Our study shows that MCR-ALS (Multivariate Curve Resolution-Alternating Least Squares) and N-FINDR (N-finder algorithm) Raman imaging could serve as a suitable complementary package to the traditional methods, for revealing the antifungal mechanism of action of EO/NE.


Assuntos
Antifúngicos , Óleos Voláteis , Antifúngicos/farmacologia , Antifúngicos/química , Óleos Voláteis/química , Diagnóstico por Imagem , Chá , Análise dos Mínimos Quadrados
2.
Ultrason Sonochem ; 76: 105649, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34186493

RESUMO

Blast is one of the most devastating fungal diseases of rice caused by Magnaporthe oryzae. Plant essential oil (EO) can function as antifungal agents and are regarded as a safe and acceptable method for plant disease control. However, EOs are unstable and hydrophobic, which limits its use. In the present study, we aimed for the preparation and characterization of a nanoemulsion (NE) from green tea essential oil (GTO) by ultrasonication method and determined the antifungal activity of NE onM. oryzae. The particle size and zeta potential of the NE were 86.98 nm and -15.1 mV, respectively. The chemical composition and functional groups of GTO and NE were studied by using GC-MS analysis, portable Raman spectroscopy, and FTIR coupled with chemometric analysis. GC-MS analysis showed the major components in GTO and NE were n-Hexyl cinnamaldehyde and L-α-Terpineol. Both GTO and NE showed good antioxidant activity and total phenol content. Moreover, the NE showed good antifungal activity againstM. oryzae which was further confirmed by scanning electron microscopy (SEM) examination. Also, confocal Raman micro-spectroscopy (CRM) revealed the antifungal mechanism of GTO and NE on M. oryzae which proves the cell damage. To the best of our knowledge, this is the first study on the antifungal activity of GTO and NE against M. oryzae and also the use of CRM for the evaluation of the chemical changes in single fungal hyphae in a holistic approach. This study suggests that the prepared NE could be a potential candidate for use as a substitute for synthetic fungicides.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Magnaporthe/efeitos dos fármacos , Nanoestruturas/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Chá/química , Emulsões , Concentração Inibidora 50
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA