Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acta Biomater ; 108: 337-346, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32251783

RESUMO

Application of messenger RNA (mRNA) for bone regeneration is a promising alternative to DNA, recombinant proteins and peptides. However, exogenous in vitro transcribed mRNA (IVT mRNA) triggers innate immune response resulting in mRNA degradation and translation inhibition. Inspired by the ability of viral immune evasion proteins to inhibit host cell responses against viral RNA, we applied non-structural protein-1 (NS1) from Influenza A virus (A/Texas/36/1991) as an IVT mRNA enhancer. We evidenced a dose-dependent blocking of RNA sensors by NS1 expression. The co-delivery of NS1 mRNA with mRNA of reporter genes significantly increased the translation efficiency. Interestingly, unlike the use of nucleosides modification, NS1-mediated mRNA translation enhancement does not dependent to cell type. Dual delivery of NS1 mRNA and BMP-2 mRNA to murine pluripotent stem cells (C3H10T1/2), promoted osteogenic differentiation evidenced by enhanced expression of osteoblastic markers (e.g. alkaline phosphatase, type I collagen, osteopontin, and osteocalcin), and extracellular mineralization. Overall, these results support the adjuvant potentiality of NS1 for mRNA-based regenerative therapies. STATEMENT OF SIGNIFICANCE: mRNA therapy has the potential to improve the efficiency of nucleic acid based regenerative medicine. Up to now, the incorporation of expensive modified nucleotides is a common way to avoid IVT mRNA-induced detrimental immunogenicity. We here introduce co-delivery of Influenza virus immune evasion protein-NS1 coding mRNA as a strategy to suppress RNA sensors for maximizing IVT mRNA expression. An increased osteogenic commitment of pluripotent stem cells was observed after BMP2 mRNA and NS1 mRNA delivery. This study revealed how applying non-modified mRNA with NS1 could be a promising alternative as a therapeutic in bone regeneration.


Assuntos
Osteogênese , Células-Tronco Pluripotentes , Animais , Proteína Morfogenética Óssea 2/genética , Diferenciação Celular , Camundongos , RNA Mensageiro/genética , Proteínas Recombinantes
2.
J Orthop Res ; 35(12): 2637-2645, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28401593

RESUMO

Tissue-engineered constructs (TECs) combining resorbable calcium-based scaffolds and mesenchymal stem cells (MSCs) have the capability to regenerate large bone defects. Inconsistent results have, however, been observed, with a lack of osteoinductivity as a possible cause of failure. This study aimed to evaluate the impact of the addition of low-dose bone morphogenetic protein-2 (BMP-2) to MSC-coral-TECs on the healing of clinically relevant segmental bone defects in sheep. Coral granules were either seeded with autologous MSCs (bone marrow-derived) or loaded with BMP-2. A 25-mm-long metatarsal bone defect was created and stabilized with a plate in 18 sheep. Defects were filled with one of the following TECs: (i) BMP (n = 5); (ii) MSC (n = 7); or (iii) MSC-BMP (n = 6). Radiographic follow-up was performed until animal sacrifice at 4 months. Bone formation and scaffold resorption were assessed by micro-CT and histological analysis. Bone union with nearly complete scaffold resorption was observed in 1/5, 2/7, and 3/6 animals, when BMP-, MSC-, and MSC-BMP-TECs were implanted, respectively. The amount of newly formed bone was not statistically different between groups: 1074 mm3 [970-2478 mm3 ], 1155 mm3 [970-2595 mm3 ], and 2343 mm3 [931-3276 mm3 ] for BMP-, MSC-, and MSC-BMP-TECs, respectively. Increased scaffold resorption rate using BMP-TECs was the only potential side effect observed. In conclusion, although the dual delivery of MSCs and BMP-2 onto a coral scaffold further increased bone formation and bone union when compared to single treatment, results were non-significant. Only 50% of the defects healed, demonstrating the need for further refinement of this strategy before clinical use. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2637-2645, 2017.


Assuntos
Proteína Morfogenética Óssea 2/administração & dosagem , Regeneração Óssea/efeitos dos fármacos , Transplante de Células-Tronco Mesenquimais , Alicerces Teciduais , Animais , Antozoários , Avaliação Pré-Clínica de Medicamentos , Feminino , Regeneração Tecidual Guiada , Ossos do Metatarso , Ovinos
3.
Int J Biomater ; 2014: 367265, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24982676

RESUMO

Bone substitutes alone or supplemented with platelet-derived concentrates are widely used to promote bone regeneration but their potency remains controversial. The aim of this study was, therefore, to compare the regenerative potential of preparations containing autologous platelet lysate (APL) and particles of either deproteinized bovine bone mineral (DBBM) or biphasic calcium phosphate (BCP), two bone substitutes with different resorption patterns. Rabbit APL was prepared by freeze-thawing a platelet suspension. Critical-size defects in rabbit femoral condyle were filled with DBBM or DBBM+APL and BCP or BCP+APL. Rabbits were sacrificed after six weeks and newly formed bone and residual implanted material were evaluated using nondemineralized histology and histomorphometry. New bone was observed around particles of all fillers tested. In the defects filled with BCP, the newly formed bone area was greater (70%; P < 0.001) while the residual material area was lower (60%; P < 0.001) than that observed in those filled with DBBM. New bone and residual material area of defects filled with either APL+DBBM or APL+BCP were similar to those observed in those filled with the material alone. In summary, osteoconductivity and resorption of BCP were greater than those of DBBM, while APL associated with either DBBM or BCP did not have an additional benefit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA