Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Photochem Photobiol B ; 210: 111979, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32738748

RESUMO

CONTEXT: Cancer Pain is considered a common and significant clinical problem in malignant neoplasms, comprising 20% to 50% of all patients with tumor progression. Laser photobiomodulation (L-PBM) has been used in a multitude of pain events, ranging from acute trauma to chronic articular. However, L-PBM has never been tested in cancer pain. OBJECTIVES: Evaluate hyperalgesia, edema, COX-1, COX-2, IL-10, and Bdkrb1 mRNA in low-level laser irradiated Walker-256 tumor-bearing rats. METHODS: Rat hind paw injected with Walker Tumor-256 (W-256) and divided into six groups of 6 rats: G1 (control) - W-256 injected, G2- W-256 + Nimesulide, G3- W-256 + 1 J, G4- W-256 + 3 Jand G5- W256 + 6 J. Laser parameters: λ = 660 nm, 3.57 W/cm2, Ø = 0.028 cm2. Mechanical hyperalgesia was evaluated by Randall-Selitto test. Plethysmography measured edema; mRNA levels of COX-1, COX-2, IL-10, and Bdkrb1were analyzed. RESULTS: It was found that the W-256 + 1 J group showed a decrease in paw edema, a significant reduction in pain threshold. Higher levels of IL-10 and lower levels of COX-2 and Bdkrb1 were observed. CONCLUSION: Results suggest that 1 J L-PBM reduced the expression of COX-2 and Bdkrb1 and increasing IL-10 gene expression, promoting analgesia to close levels to nimesulide.


Assuntos
Hiperalgesia/radioterapia , Lasers Semicondutores/uso terapêutico , Terapia com Luz de Baixa Intensidade , Animais , Carcinoma 256 de Walker/metabolismo , Carcinoma 256 de Walker/patologia , Linhagem Celular Tumoral , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Edema/metabolismo , Edema/patologia , Humanos , Interleucina-10/genética , Interleucina-10/metabolismo , Masculino , Pletismografia , Ratos , Ratos Wistar , Transplante Heterólogo
2.
J Photochem Photobiol B ; 177: 69-75, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29107204

RESUMO

Laser photobiomodulation or low-level laser therapy (LLLT) is recognized worldwide for its expansive use in medicine. LLLT has been reported to increase enzymatic activity, increasing the mitochondrial transmembrane potential, leading to an increased energy availability and signal transduction. Nevertheless, an inhibitory effect is also observed by the production of excessive ROS which can result the shutdown of mitochondrial energy production, and finally to apoptosis. However, the mechanism of apoptosis induced by LLLT is still not well understood. The main objective of the present study was to investigate the hypothesis that LLLT induces oxidative stress and stimulates the generation of pro-inflammatory markers interfering in tumor progression. METHODS: Seventy-two female Walker Tumor induced Wistar rats (eight weeks of age, 200g body weight) were used for this study. TW-256 cells were suspended in phosphate buffered saline and then subcutaneously inoculated at 1×107viabletumorcells/ml per rat into the right flank (tumor-bearing rats). After a period of 14days in order to assess the development of the solid tumor mass, the animals were randomized and distributed in four groups (n=8 animals/group): (1) Control or irradiated by LLLT (2) Laser 1J - 35,7J/cm2, (3) Laser 3J - 107,14J/cm2 and (4) Laser 6J - 214,28J/cm2; (Thera Laser - 660nm, 100mW DMC®, São Carlos, Brazil) at four equidistant points according to their respective treatment groups, conducted three times on alternate days. The regulation and expression of inflammatory mediators IL-1ß, IL-6, IL-10, TNF-α was assessed by ELISA and gene expression of COX-1, COX-2, iNOS, eNOS was analyzed by RT-PCR. RESULTS: We found that the 1Joule (J) treated group promoted a significant increase in the levels of different inflammatory markers IL-1ß, the gene expression of COX-2, iNOS, which was statistically different (p<0.05) when compared among different treatment and control groups. With Respect IL-6, IL-10, TNF-α levels statistically significant reduce was observed in 1Joule treated group when comparing to different energies groups and control group. CONCLUSION: Our results suggest the evidence 1J-35,7J/cm2 treatment was able to produce cytotoxic effects by generation of ROS causing acute inflammation and thus may be employed as the best energy dose associated with Photodynamic Therapy.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/radioterapia , Mediadores da Inflamação/metabolismo , Lasers de Estado Sólido , Terapia com Luz de Baixa Intensidade , Animais , Linhagem Celular Tumoral , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Citocinas/análise , Ensaio de Imunoadsorção Enzimática , Feminino , Expressão Gênica/efeitos da radiação , Lasers de Estado Sólido/uso terapêutico , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
3.
Photochem Photobiol ; 89(2): 508-12, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22989160

RESUMO

Muscle injuries represent ca 30% of sports injuries and excessive stretching of muscle causes more than 90% of injuries. Currently the most used treatments are nonsteroidal anti-inflammatory drugs (NSAIDs), however, in last years, low-level laser therapy (LLLT) is becoming an interesting therapeutic modality. The aim of this study was to evaluate the effect of single and combined therapies (LLLT, topical application of diclofenac and intramuscular diclofenac) on functional and biochemical aspects in an experimental model of controlled muscle strain in rats. Muscle strain was induced by overloading tibialis anterior muscle of rats. Injured groups received either no treatment, or a single treatment with topical or intramuscular diclofenac (TD and ID), or LLLT (3 J, 810 nm, 100 mW) 1 h after injury. Walking track analysis was the functional outcome and biochemical analyses included mRNA expression of COX-1 and COX-2 and blood levels of prostaglandin E2 (PGE2 ). All treatments significantly decreased COX-1 and COX-2 gene expression compared with injury group (P < 0.05). However, LLLT showed better effects than TD and ID regarding PGE2 levels and walking track analysis (P < 0.05). We can conclude that LLLT has more efficacy than topical and intramuscular diclofenac in treatment of muscle strain injury in acute stage.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Diclofenaco/farmacologia , Terapia com Luz de Baixa Intensidade , Músculo Esquelético/efeitos da radiação , Lesões dos Tecidos Moles/radioterapia , Entorses e Distensões/radioterapia , Animais , Biomarcadores/análise , Terapia Combinada , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 1/imunologia , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/imunologia , Dinoprostona/sangue , Expressão Gênica/efeitos da radiação , Injeções Intramusculares , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/lesões , Músculo Esquelético/metabolismo , Ratos , Ratos Wistar , Lesões dos Tecidos Moles/tratamento farmacológico , Entorses e Distensões/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA