Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(17)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36080112

RESUMO

Biologically active substances of natural origin offer a promising alternative in skin disease treatment in comparison to synthetic medications. The limiting factors for the efficient application of natural compounds, such as low water solubility and low bioavailability, can be easily overcome by the development of suitable delivery systems. In this study, the exchange with the template procedure was used for the preparation ofa spherical silver-modified mesoporous silica nanocarrier. The initial and drug-loaded formulations are fully characterized by different physico-chemical methods. The incipient wetness impregnation method used to load health-promoting agents, curcumin, and capsaicin in Ag-modified carriers separately or in combinationresulted in high loading efficiency (up to 33 wt.%). The interaction between drugs and carriers was studied by ATR-FTIR spectroscopy. The release experiments of both active substances from the developed formulations were studied in buffers with pH 5.5, and showed improved solubility. Radical scavenging activity and ferric-reducing antioxidant power assays were successfully used for the evaluation of the antiradical and antioxidant capacity of the curcumin or/and capsaicin loaded on mesoporous carriers. Formulations containing a mixture of curcumin and capsaicin were characterized bypotentiation of their antiproliferative effect against maligning cells, and it was confirmed that the system for simultaneous delivery of both drugs has lower IC50 values than the free substances.The antibacterial tests showed better activity of the obtained delivery systems in comparison with the pure curcumin and capsaicin. Considering the obtained results, it can be concluded that the obtained delivery systems are promising for potential dermal treatment.

2.
Appl Microbiol Biotechnol ; 98(6): 2441-51, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24323288

RESUMO

2,3-Butanediol (2,3-BD) is an organic compound, which is widely used as a fuel and fuel additive and applied in chemical, food, and pharmaceutical industries. Contemporary strategies for its economic synthesis include the development of microbial technologies that use starch as cheap and renewable feedstock. The present work encompasses the metabolic engineering of the excellent 2,3-BD producer Klebsiella pneumoniae G31. In order to perform direct starch conversion into 2,3-BD, the amyL gene encoding quite active, liquefying α-amylase in Bacillus licheniformis was cloned under lac promoter control in the recombinant K. pneumoniae G31-A. The enhanced extracellular over-expression of amyL led to the highest extracellular amylase activity (68 U/ml) ever detected in Klebsiella. The recombinant strain was capable of simultaneous saccharification and fermentation (SSF) of potato starch to 2,3-BD. In SSF batch process by the use of 200 g/l starch, the amount of total diols produced was 60.9 g/l (53.8 g/l 2,3-BD and 7.1 g/l acetoin), corresponding to 0.31 g/g conversion rate. The presented results are the first to show successful starch conversion to 2,3-BD by K. pneumoniae in a one-step process.


Assuntos
Butileno Glicóis/metabolismo , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Engenharia Metabólica , Amido/metabolismo , Bacillus/enzimologia , Bacillus/genética , Clonagem Molecular , Expressão Gênica , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Análise de Sequência de DNA , Solanum tuberosum/química , alfa-Amilases/genética , alfa-Amilases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA