Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 3381, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099669

RESUMO

Nutrient amendment diminished bacterial functional diversity, consolidating carbon flow through fewer bacterial taxa. Here, we show strong differences in the bacterial taxa responsible for respiration from four ecosystems, indicating the potential for taxon-specific control over soil carbon cycling. Trends in functional diversity, defined as the richness of bacteria contributing to carbon flux and their equitability of carbon use, paralleled trends in taxonomic diversity although functional diversity was lower overall. Among genera common to all ecosystems, Bradyrhizobium, the Acidobacteria genus RB41, and Streptomyces together composed 45-57% of carbon flow through bacterial productivity and respiration. Bacteria that utilized the most carbon amendment (glucose) were also those that utilized the most native soil carbon, suggesting that the behavior of key soil taxa may influence carbon balance. Mapping carbon flow through different microbial taxa as demonstrated here is crucial in developing taxon-sensitive soil carbon models that may reduce the uncertainty in climate change projections.


Assuntos
Ciclo do Carbono , Mudança Climática , Nutrientes/metabolismo , Microbiologia do Solo , Solo/química , Acidobacteria/genética , Acidobacteria/isolamento & purificação , Acidobacteria/metabolismo , Biodiversidade , Bradyrhizobium/genética , Bradyrhizobium/isolamento & purificação , Bradyrhizobium/metabolismo , Carbono/metabolismo , DNA Bacteriano/isolamento & purificação , Monitorização de Parâmetros Ecológicos/métodos , Previsões/métodos , Fósforo/metabolismo , RNA Ribossômico 16S/genética , Streptomyces/genética , Streptomyces/isolamento & purificação , Streptomyces/metabolismo
2.
Ecology ; 101(2): e02928, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31715005

RESUMO

Humid tropical forests are among the most productive ecosystems globally, yet they often occur on soils with high phosphorus (P) sorption capacity, lowering P availability to biota. Short-term anoxic events are thought to release sorbed P and enhance its acquisition by soil microbes. However, the actual effects of anoxic conditions on microbial P acquisition in humid tropical forest soils are surprisingly poorly studied. We used laboratory incubations of bulk soils, NanoSIMS analysis of single microbial cells, and landscape-scale measurements in the Luquillo Experimental Forest (LEF), Puerto Rico to test the hypothesis that anoxic conditions increase microbial P acquisition in humid tropical forests. In laboratory and field experiments, we found that microbial P uptake generally decreased under anoxic conditions, leading to high microbial carbon (C) to P ratios in anoxic soils. The decreased P acquisition under anoxic conditions was correlated with lower microbial C use efficiency (CUE), an index of microbial energy transfer in ecosystems. Phosphorus amendments to anoxic soils led to increased microbial P uptake and higher CUE suggesting that microbes were less able to access and utilize P under natural low redox conditions. Under oxic conditions, microbial C:P ratios and CUE did not respond to changes in substrate stoichiometry. These results challenge the existing paradigm by showing that anoxic conditions can decrease microbial P uptake and ultimately constrain microbial CUE. Our findings indicate that soil redox conditions tightly couple soil P and C cycles and advance our understanding of controls on P cycling in humid tropical forest ecosystems.


Assuntos
Fósforo , Solo , Carbono , Ecossistema , Florestas , Nitrogênio , Oxirredução , Porto Rico , Microbiologia do Solo
3.
J Biol Chem ; 294(46): 17626-17641, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31527081

RESUMO

Exposing cells to excess metal concentrations well beyond the cellular quota is a powerful tool for understanding the molecular mechanisms of metal homeostasis. Such improved understanding may enable bioengineering of organisms with improved nutrition and bioremediation capacity. We report here that Chlamydomonas reinhardtii can accumulate manganese (Mn) in proportion to extracellular supply, up to 30-fold greater than its typical quota and with remarkable tolerance. As visualized by X-ray fluorescence microscopy and nanoscale secondary ion MS (nanoSIMS), Mn largely co-localizes with phosphorus (P) and calcium (Ca), consistent with the Mn-accumulating site being an acidic vacuole, known as the acidocalcisome. Vacuolar Mn stores are accessible reserves that can be mobilized in Mn-deficient conditions to support algal growth. We noted that Mn accumulation depends on cellular polyphosphate (polyP) content, indicated by 1) a consistent failure of C. reinhardtii vtc1 mutant strains, which are deficient in polyphosphate synthesis, to accumulate Mn and 2) a drastic reduction of the Mn storage capacity in P-deficient cells. Rather surprisingly, X-ray absorption spectroscopy, EPR, and electron nuclear double resonance revealed that only little Mn2+ is stably complexed with polyP, indicating that polyP is not the final Mn ligand. We propose that polyPs are a critical component of Mn accumulation in Chlamydomonas by driving Mn relocation from the cytosol to acidocalcisomes. Within these structures, polyP may, in turn, escort vacuolar Mn to a number of storage ligands, including phosphate and phytate, and other, yet unidentified, compounds.


Assuntos
Chlamydomonas/metabolismo , Íons/metabolismo , Manganês/metabolismo , Vacúolos/efeitos dos fármacos , Cálcio/metabolismo , Chlamydomonas/efeitos dos fármacos , Íons/química , Manganês/toxicidade , Fósforo/metabolismo , Vacúolos/metabolismo , Espectroscopia por Absorção de Raios X
4.
Science ; 332(6034): 1163-6, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21127214

RESUMO

Life is mostly composed of the elements carbon, hydrogen, nitrogen, oxygen, sulfur, and phosphorus. Although these six elements make up nucleic acids, proteins, and lipids and thus the bulk of living matter, it is theoretically possible that some other elements in the periodic table could serve the same functions. Here, we describe a bacterium, strain GFAJ-1 of the Halomonadaceae, isolated from Mono Lake, California, that is able to substitute arsenic for phosphorus to sustain its growth. Our data show evidence for arsenate in macromolecules that normally contain phosphate, most notably nucleic acids and proteins. Exchange of one of the major bio-elements may have profound evolutionary and geochemical importance.


Assuntos
Arseniatos/metabolismo , Arsênio/metabolismo , DNA Bacteriano/química , Halomonadaceae/crescimento & desenvolvimento , Halomonadaceae/metabolismo , Fosfatos/metabolismo , Fósforo/metabolismo , Arseniatos/análise , Arsênio/análise , Arsênio/química , Proteínas de Bactérias/análise , Proteínas de Bactérias/metabolismo , California , Meios de Cultura , DNA Bacteriano/metabolismo , Sedimentos Geológicos/microbiologia , Halomonadaceae/citologia , Halomonadaceae/isolamento & purificação , Dados de Sequência Molecular , Fosfatos/análise , Fósforo/análise , Fósforo/química , Espectrometria de Massa de Íon Secundário , Vacúolos/ultraestrutura , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA