Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cell Metab ; 35(3): 438-455.e7, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36889283

RESUMO

Until menopause, women have a lower propensity to develop metabolic diseases than men, suggestive of a protective role for sex hormones. Although a functional synergy between central actions of estrogens and leptin has been demonstrated to protect against metabolic disturbances, the underlying cellular and molecular mechanisms mediating this crosstalk have remained elusive. By using a series of embryonic, adult-onset, and tissue/cell-specific loss-of-function mouse models, we document an unprecedented role of hypothalamic Cbp/P300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 1 (Cited1) in mediating estradiol (E2)-dependent leptin actions that control feeding specifically in pro-opiomelanocortin (Pomc) neurons. We reveal that within arcuate Pomc neurons, Cited1 drives leptin's anorectic effects by acting as a co-factor converging E2 and leptin signaling via direct Cited1-ERα-Stat3 interactions. Together, these results provide new insights on how melanocortin neurons integrate endocrine inputs from gonadal and adipose axes via Cited1, thereby contributing to the sexual dimorphism in diet-induced obesity.


Assuntos
Núcleo Arqueado do Hipotálamo , Leptina , Camundongos , Animais , Feminino , Leptina/metabolismo , Estradiol/farmacologia , Pró-Opiomelanocortina/metabolismo , Hipotálamo/metabolismo , Obesidade/metabolismo
2.
J Clin Invest ; 130(11): 6093-6108, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32780722

RESUMO

Recent genome-wide association studies (GWAS) identified DUSP8, encoding a dual-specificity phosphatase targeting mitogen-activated protein kinases, as a type 2 diabetes (T2D) risk gene. Here, we reveal that Dusp8 is a gatekeeper in the hypothalamic control of glucose homeostasis in mice and humans. Male, but not female, Dusp8 loss-of-function mice, either with global or corticotropin-releasing hormone neuron-specific deletion, had impaired systemic glucose tolerance and insulin sensitivity when exposed to high-fat diet (HFD). Mechanistically, we found impaired hypothalamic-pituitary-adrenal axis feedback, blunted sympathetic responsiveness, and chronically elevated corticosterone levels driven by hypothalamic hyperactivation of Jnk signaling. Accordingly, global Jnk1 ablation, AAV-mediated Dusp8 overexpression in the mediobasal hypothalamus, or metyrapone-induced chemical adrenalectomy rescued the impaired glucose homeostasis of obese male Dusp8-KO mice, respectively. The sex-specific role of murine Dusp8 in governing hypothalamic Jnk signaling, insulin sensitivity, and systemic glucose tolerance was consistent with functional MRI data in human volunteers that revealed an association of the DUSP8 rs2334499 risk variant with hypothalamic insulin resistance in men. Further, expression of DUSP8 was increased in the infundibular nucleus of T2D humans. In summary, our findings suggest the GWAS-identified gene Dusp8 as a novel hypothalamic factor that plays a functional role in the etiology of T2D.


Assuntos
Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Tipo 2/enzimologia , Fosfatases de Especificidade Dupla/metabolismo , Hipotálamo/enzimologia , Resistência à Insulina , MAP Quinase Quinase 4/metabolismo , Transdução de Sinais , Animais , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 2/genética , Fosfatases de Especificidade Dupla/genética , MAP Quinase Quinase 4/genética , Camundongos , Camundongos Knockout
3.
J Med Chem ; 61(24): 11144-11157, 2018 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-30525586

RESUMO

Celastrol is a natural pentacyclic triterpene used in traditional Chinese medicine with significant weight-lowering effects. Celastrol-administered mice at 100 µg/kg decrease food consumption and body weight via a leptin-dependent mechanism, yet its molecular targets in this pathway remain elusive. Here, we demonstrate in vivo that celastrol-induced weight loss is largely mediated by the inhibition of leptin negative regulators protein tyrosine phosphatase (PTP) 1B (PTP1B) and T-cell PTP (TCPTP) in the arcuate nucleus (ARC) of the hypothalamus. We show in vitro that celastrol binds reversibly and inhibits noncompetitively PTP1B and TCPTP. NMR data map the binding site to an allosteric site in the catalytic domain that is in proximity of the active site. By using a panel of PTPs implicated in hypothalamic leptin signaling, we show that celastrol additionally inhibited PTEN and SHP2 but had no activity toward other phosphatases of the PTP family. These results suggest that PTP1B and TCPTP in the ARC are essential for celastrol's weight lowering effects in adult obese mice.


Assuntos
Fármacos Antiobesidade/farmacologia , Obesidade/tratamento farmacológico , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 2/antagonistas & inibidores , Triterpenos/farmacologia , Sítio Alostérico , Animais , Fármacos Antiobesidade/metabolismo , Domínio Catalítico , Dieta Hiperlipídica/efeitos adversos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Camundongos Transgênicos , Obesidade/etiologia , Triterpenos Pentacíclicos , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/química , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Relação Estrutura-Atividade , Triterpenos/química , Triterpenos/metabolismo , Redução de Peso/efeitos dos fármacos
4.
Diabetes ; 67(11): 2456-2465, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30158241

RESUMO

Celastrol, a plant-derived constituent of traditional Chinese medicine, has been proposed to offer significant potential as an antiobesity drug. However, the molecular mechanism for this activity is unknown. We show that the weight-lowering effects of celastrol are driven by decreased food consumption. Although young Lep ob mice respond with a decrease in food intake and body weight, adult Lep db and Lep ob mice are unresponsive to celastrol, suggesting that functional leptin signaling in adult mice is required to elicit celastrol's catabolic actions. Protein tyrosine phosphatase 1 (PTP1B), a leptin negative-feedback regulator, has been previously reported to be one of celastrol's targets. However, we found that global PTP1B knockout (KO) and wild-type (WT) mice have comparable weight loss and hypophagia when treated with celastrol. Increased levels of uncoupling protein 1 (UCP1) in subcutaneous white and brown adipose tissue suggest celastrol-induced thermogenesis as a further mechanism. However, diet-induced obese UCP1 WT and KO mice have comparable weight loss upon celastrol treatment, and celastrol treatment has no effect on energy expenditure under ambient housing or thermoneutral conditions. Overall, our results suggest that celastrol-induced weight loss is hypophagia driven and age-dependently mediated by functional leptin signaling. Our data encourage reconsideration of therapeutic antiobesity strategies built on leptin sensitization.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Obesidade/metabolismo , Extratos Vegetais/farmacologia , Triterpenos/farmacologia , Proteína Desacopladora 1/metabolismo , Redução de Peso/efeitos dos fármacos , Animais , Dieta Hiperlipídica , Metabolismo Energético/efeitos dos fármacos , Camundongos Knockout , Obesidade/genética , Triterpenos Pentacíclicos , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Desacopladora 1/genética
5.
J Neuroinflammation ; 15(1): 35, 2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-29422055

RESUMO

ᅟ: Astrocytosis is a reactive process involving cellular, molecular, and functional changes to facilitate neuronal survival, myelin preservation, blood brain barrier function and protective glial scar formation upon brain insult. The overall pro- or anti-inflammatory impact of reactive astrocytes appears to be driven in a context- and disease-driven manner by modulation of astrocytic Ca2+ homeostasis and activation of Ca2+/calmodulin-activated serine/threonine phosphatase calcineurin. Here, we aimed to assess whether calcineurin is dispensable for astrocytosis in the hypothalamus driven by prolonged high fat diet (HFD) feeding. Global deletion of calcineurin A beta (gene name: Ppp3cb) led to a decrease of glial fibrillary acidic protein (GFAP)-positive cells in the ventromedial hypothalamus (VMH), dorsomedial hypothalamus (DMH), and arcuate nucleus (ARC) of mice exposed chronically to HFD. The concomitant decrease in Iba1-positive microglia in the VMH further suggests a modest impact of Ppp3cb deletion on microgliosis. Pharmacological inhibition of calcineurin activity by Fk506 had no impact on IBA1-positive microglia in hypothalami of mice acutely exposed to HFD for 1 week. However, Fk506-treated mice displayed a decrease in GFAP levels in the ARC. In vivo effects could not be replicated in cell culture, where calcineurin inhibition by Fk506 had no effect on astrocytic morphology, astrocytic cell death, GFAP, and vimentin protein levels or microglia numbers in primary hypothalamic astrocytes and microglia co-cultures. Further, adenoviral overexpression of calcineurin subunit Ppp3r1 in primary glia culture did not lead to an increase in GFAP fluorescence intensity. Overall, our results point to a prominent role of calcineurin in mediating hypothalamic astrocytosis as response to acute and chronic HFD exposure. Moreover, discrepant findings in vivo and in cell culture indicate the necessity of studying astrocytes in their "natural" environment, i.e., preserving an intact hypothalamic microenvironment with neurons and non-neuronal cells in close proximity.


Assuntos
Calcineurina/deficiência , Dieta Hiperlipídica/efeitos adversos , Gliose/metabolismo , Gliose/prevenção & controle , Hipotálamo/metabolismo , Animais , Astrócitos/metabolismo , Sobrevivência Celular/fisiologia , Células Cultivadas , Gliose/patologia , Hipotálamo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
6.
Biomed Chromatogr ; 32(4)2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29166705

RESUMO

Monoamines, acting as hormones and neurotransmitters, play a critical role in multiple physiological processes ranging from cognitive function and mood to sympathetic nervous system activity, fight-or-flight response and glucose homeostasis. In addition to brain and blood, monoamines are abundant in several tissues, and dysfunction in their synthesis or signaling is associated with various pathological conditions. It was our goal to develop a method to detect these compounds in peripheral murine tissues. In this study, we employed a high-performance liquid chromatography method using electrochemical detection that allows not only detection of catecholamines but also a detailed analysis of nine monoamines and metabolites in murine tissues. Simple tissue extraction procedures were optimized for muscle (gastrocnemius, extensor digitorum longus and soleus), liver, pancreas and white adipose tissue in the range of weight 10-200 mg. The system allowed a limit of detection between 0.625 and 2.5 pg µL-1 for monoamine analytes and their metabolites, including dopamine, 3,4-dihydroxyphenylacetic acid, 3-methoxytyramine, homovanillic acid, norepinephrine, epinephrine, 3-methoxy-4-hydroxyphenylglycol, serotonin and 5-hydroxyindoleacetic acid. Typical concentrations for different monoamines and their metabolization products in these tissues are presented for C57Bl/6 J mice fed a high-fat diet.


Assuntos
Monoaminas Biogênicas/análise , Monoaminas Biogênicas/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Técnicas Eletroquímicas/métodos , Tecido Adiposo Branco/química , Animais , Monoaminas Biogênicas/química , Dieta Hiperlipídica , Sistema Digestório/química , Hipotálamo/química , Limite de Detecção , Modelos Lineares , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/química , Especificidade de Órgãos , Reprodutibilidade dos Testes
7.
Neuroscience ; 357: 241-254, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28627418

RESUMO

Elevated levels of oxidative stress and neuronal inflammation in the hypothalamus or ventral midbrain, respectively, represent common denominators for obesity and Parkinson's Disease (PD). However, little is known about defense mechanisms that protect neurons in these regions from oxidative damage. Here, we aimed to assess whether murine Gpx4, a crucial antioxidant enzyme that protects neurons from membrane damage and ferroptosis, is critical for the protection from neuronal inflammation in two distinct pathophysiologic diseases, namely metabolic dysfunction in diet-induced obesity or PD. Gpx4 was deleted from either AgRP or POMC neurons in the hypothalamus, essential for metabolic homeostasis, or from dopaminergic neurons in the ventral midbrain, governing behaviors such as anxiety or voluntary movement. To induce a pro-inflammatory environment, AgRP and POMC neuron-specific Gpx4 knockout mice were subjected to high-fat high-sucrose (HFHS) diet. To exacerbate oxidative stress in dopaminergic neurons of the ventral midbrain, we systemically co-deleted the PD-related gene DJ-1. Gpx4 was dispensable for the maintenance of cellular health and function of POMC neurons, even in mice exposed to obesogenic conditions. In contrast, HFHS-fed mice with Gpx4 deletion from AgRP neurons displayed increased body adiposity. Gpx4 expression and activity were diminished in the hypothalamus of HFHS-fed mice compared to standard diet-fed controls. Gpx4 deletion from dopaminergic neurons induced anxiety behavior, and diminished spontaneous locomotor activity when DJ-1 was co-deleted. Overall, these data suggest a physiological role for Gpx4 in balancing metabolic control signals and inflammation in AgRP but not POMC neurons. Moreover, Gpx4 appears to constitute an important rheostat against neuronal dysfunction and PD-like symptoms in dopaminergic circuitry within the ventral midbrain.


Assuntos
Ansiedade/enzimologia , Peso Corporal/fisiologia , Glutationa Peroxidase/deficiência , Atividade Motora/fisiologia , Obesidade/enzimologia , Transtornos Parkinsonianos/enzimologia , Adiposidade/fisiologia , Animais , Ansiedade/imunologia , Ansiedade/patologia , Comportamento Animal/fisiologia , Dieta Hiperlipídica , Sacarose Alimentar , Neurônios Dopaminérgicos/enzimologia , Neurônios Dopaminérgicos/imunologia , Neurônios Dopaminérgicos/patologia , Feminino , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Hipotálamo/enzimologia , Hipotálamo/imunologia , Hipotálamo/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/patologia , Estresse Oxidativo/fisiologia , Transtornos Parkinsonianos/imunologia , Transtornos Parkinsonianos/patologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Proteína Desglicase DJ-1/genética , Proteína Desglicase DJ-1/metabolismo , Caracteres Sexuais , Glutationa Peroxidase GPX1
8.
Cell ; 166(4): 867-880, 2016 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-27518562

RESUMO

We report that astrocytic insulin signaling co-regulates hypothalamic glucose sensing and systemic glucose metabolism. Postnatal ablation of insulin receptors (IRs) in glial fibrillary acidic protein (GFAP)-expressing cells affects hypothalamic astrocyte morphology, mitochondrial function, and circuit connectivity. Accordingly, astrocytic IR ablation reduces glucose-induced activation of hypothalamic pro-opio-melanocortin (POMC) neurons and impairs physiological responses to changes in glucose availability. Hypothalamus-specific knockout of astrocytic IRs, as well as postnatal ablation by targeting glutamate aspartate transporter (GLAST)-expressing cells, replicates such alterations. A normal response to altering directly CNS glucose levels in mice lacking astrocytic IRs indicates a role in glucose transport across the blood-brain barrier (BBB). This was confirmed in vivo in GFAP-IR KO mice by using positron emission tomography and glucose monitoring in cerebral spinal fluid. We conclude that insulin signaling in hypothalamic astrocytes co-controls CNS glucose sensing and systemic glucose metabolism via regulation of glucose uptake across the BBB.


Assuntos
Astrócitos/metabolismo , Glucose/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Transdução de Sinais , Sistema X-AG de Transporte de Aminoácidos/genética , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Barreira Hematoencefálica , Retículo Endoplasmático/metabolismo , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Homeostase , Camundongos , Mitocôndrias/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo
9.
Nat Commun ; 7: 10782, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26923837

RESUMO

Hypothalamic leptin signalling has a key role in food intake and energy-balance control and is often impaired in obese individuals. Here we identify histone deacetylase 5 (HDAC5) as a regulator of leptin signalling and organismal energy balance. Global HDAC5 KO mice have increased food intake and greater diet-induced obesity when fed high-fat diet. Pharmacological and genetic inhibition of HDAC5 activity in the mediobasal hypothalamus increases food intake and modulates pathways implicated in leptin signalling. We show HDAC5 directly regulates STAT3 localization and transcriptional activity via reciprocal STAT3 deacetylation at Lys685 and phosphorylation at Tyr705. In vivo, leptin sensitivity is substantially impaired in HDAC5 loss-of-function mice. Hypothalamic HDAC5 overexpression improves leptin action and partially protects against HFD-induced leptin resistance and obesity. Overall, our data suggest that hypothalamic HDAC5 activity is a regulator of leptin signalling that adapts food intake and body weight to our dietary environment.


Assuntos
Hipotálamo/metabolismo , Leptina/metabolismo , Animais , Glicemia , Linhagem Celular , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Teste de Tolerância a Glucose , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Infusões Intraventriculares , Resistência à Insulina , Microdissecção e Captura a Laser , Leptina/genética , Masculino , Hormônios Estimuladores de Melanócitos/farmacologia , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Neurônios/fisiologia , Ratos , Ratos Wistar
10.
Diabetes ; 63(4): 1422-7, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24379349

RESUMO

We recently reported restoration of leptin responsiveness in diet-induced obese (DIO) mice using a pharmacologically optimized, polyethylene-glycolated (PEG)-leptin analog in combination with exendin-4 or FGF21. However, the return of leptin action required discontinuation of high-fat diet (HFD) exposure. Here we assess whether a single peptide possessing balanced coagonism at the glucagon-like peptide 1 (GLP-1) and glucagon receptors can restore leptin responsiveness in DIO mice maintained on a HFD. DIO mice were treated with PEG-GLP-1/glucagon (30 nmol/kg every fourth day) to induce an ∼15% body weight loss, upon which they were randomized to continue PEG-GLP-1/glucagon therapy or reassigned to receive supplemental daily PEG-leptin (185 nmol/kg/day). The addition of PEG-leptin to PEG-GLP-1/glucagon resulted in an ∼18% greater weight loss as compared with PEG-GLP-1/glucagon alone and was accompanied by further decreases in food intake and improved glucose and lipid metabolism. The beneficial effect of PEG-leptin supplementation occurred after an initial body weight loss similar to what we previously reported following reduced dietary fat along with PEG-leptin and exendin-4 or FGF21 cotreatment. In summary, we report that GLP-1/glucagon coagonism restores leptin responsiveness in mice maintained on a HFD, thus emphasizing the translational value of this polypharmacotherapy for the treatment of obesity and diabetes.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/agonistas , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Leptina/agonistas , Obesidade/tratamento farmacológico , Receptores de Glucagon/agonistas , Animais , Dieta Hiperlipídica , Ingestão de Alimentos/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Glucagon/agonistas , Glucagon/uso terapêutico , Leptina/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Polietilenoglicóis/uso terapêutico , Redução de Peso
11.
Diabetes ; 61(11): 2734-42, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22787140

RESUMO

Although obesity rates are rapidly rising, caloric restriction remains one of the few safe therapies. Here we tested the hypothesis that obesity-associated disorders are caused by increased adipose tissue as opposed to excess dietary lipids. Fat mass (FM) of lean C57B6 mice fed a high-fat diet (HFD; FMC mice) was "clamped" to match the FM of mice maintained on a low-fat diet (standard diet [SD] mice). FMC mice displayed improved glucose and insulin tolerance as compared with ad libitum HFD mice (P < 0.001) or SD mice (P < 0.05). These improvements were associated with fewer signs of inflammation, consistent with the less-impaired metabolism. In follow-up studies, diet-induced obese mice were food restricted for 5 weeks to achieve FM levels identical with those of age-matched SD mice. Previously, obese mice exhibited improved glucose and insulin tolerance but showed markedly increased fasting-induced hyperphagia (P < 0.001). When mice were given ad libitum access to the HFD, the hyperphagia of these mice led to accelerated body weight gain as compared with otherwise matched controls without a history of obesity. These results suggest that although caloric restriction on a HFD provides metabolic benefits, maintaining those benefits may require lifelong continuation, at least in individuals with a history of obesity.


Assuntos
Tecido Adiposo Branco/metabolismo , Restrição Calórica/efeitos adversos , Metabolismo Energético , Adiposidade , Animais , Dieta Hiperlipídica/efeitos adversos , Dieta Redutora/efeitos adversos , Regulação da Expressão Gênica , Intolerância à Glucose/sangue , Intolerância à Glucose/etiologia , Intolerância à Glucose/imunologia , Intolerância à Glucose/metabolismo , Hiperfagia/etiologia , Hipotálamo/metabolismo , Mediadores da Inflamação/metabolismo , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/dietoterapia , Obesidade/imunologia , Obesidade/metabolismo , Obesidade/prevenção & controle , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos , Distribuição Aleatória , Prevenção Secundária , Aumento de Peso
12.
Physiol Behav ; 105(1): 52-61, 2011 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-21554896

RESUMO

Recent studies suggest that spontaneous physical activity (SPA) may be under the non-conscious control of neuroendocrine circuits that are known to control food intake. To further elucidate endocrine gut-brain communication as a component of such circuitry, we here analyzed long-term and acute effects of the gastrointestinal hormones ghrelin and PYY 3-36 as well as their hypothalamic neuropeptide targets NPY, AgRP and POMC (alpha-MSH), on locomotor activity and home cage behaviors in rats. For the analysis of SPA, we used an automated infrared beam break activity measuring system, combined with a novel automated video-based behavior analysis system (HomeCageScan (HCS)). Chronic (one-month) peripheral infusion of ghrelin potently increased body weight and fat mass in rats. Such positive energy balance was intriguingly not due to an overall increased caloric ingestion, but was predominantly associated with a decrease in SPA. Chronic intracerebroventricular infusion (7 days) of ghrelin corroborated the decrease in SPA and suggested a centrally mediated mechanism. Central administration of AgRP and NPY increased food intake as expected. AgRP administration led to a delayed decrease in SPA, while NPY acutely (but transiently) increased SPA. Behavioral dissection using HCS corroborated the observed acute and transient increases of food intake and SPA by central NPY infusion. Acute central administration of alpha-MSH rapidly decreased food intake but did not change SPA. Central administration of the NPY receptor agonist PYY 3-36 transiently increased SPA. Our data suggest that the control of spontaneous physical activity by gut hormones or their neuropeptide targets may represent an important mechanistic component of energy balance regulation.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Grelina/farmacologia , Hipotálamo/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Peptídeo YY/farmacologia , Proteína Relacionada com Agouti/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Composição Corporal/efeitos dos fármacos , Composição Corporal/fisiologia , Ingestão de Alimentos/fisiologia , Hipotálamo/fisiologia , Masculino , Atividade Motora/fisiologia , Neuropeptídeo Y/metabolismo , Pró-Opiomelanocortina/metabolismo , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley
13.
Proc Natl Acad Sci U S A ; 107(33): 14875-80, 2010 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-20679202

RESUMO

The neuronal circuits involved in the regulation of feeding behavior and energy expenditure are soft-wired, reflecting the relative activity of the postsynaptic neuronal system, including the anorexigenic proopiomelanocortin (POMC)-expressing cells of the arcuate nucleus. We analyzed the synaptic input organization of the melanocortin system in lean rats that were vulnerable (DIO) or resistant (DR) to diet-induced obesity. We found a distinct difference in the quantitative and qualitative synaptology of POMC cells between DIO and DR animals, with a significantly greater number of inhibitory inputs in the POMC neurons in DIO rats compared with DR rats. When exposed to a high-fat diet (HFD), the POMC cells of DIO animals lost synapses, whereas those of DR rats recruited connections. In both DIO rats and mice, the HFD-triggered loss of synapses on POMC neurons was associated with increased glial ensheathment of the POMC perikarya. The altered synaptic organization of HFD-fed animals promoted increased POMC tone and a decrease in the stimulatory connections onto the neighboring neuropeptide Y (NPY) cells. Exposure to HFD was associated with reactive gliosis, and this affected the structure of the blood-brain barrier such that the POMC and NPY cell bodies and dendrites became less accessible to blood vessels. Taken together, these data suggest that consumption of an HFD has a major impact on the cytoarchitecture of the arcuate nucleus in vulnerable subjects, with changes that might be irreversible due to reactive gliosis.


Assuntos
Dieta , Gliose/metabolismo , Melanocortinas/metabolismo , Obesidade/metabolismo , Sinapses/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo/patologia , Núcleo Arqueado do Hipotálamo/fisiopatologia , Gorduras na Dieta/efeitos adversos , Feminino , Gliose/etiologia , Hipotálamo/metabolismo , Hipotálamo/patologia , Hipotálamo/fisiopatologia , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica , Neurônios/metabolismo , Neurônios/ultraestrutura , Neuropeptídeo Y/metabolismo , Obesidade/etiologia , Pró-Opiomelanocortina/metabolismo , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/fisiologia
14.
Nat Neurosci ; 13(7): 877-82, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20526334

RESUMO

Cholesterol circulates in the blood in association with triglycerides and other lipids, and elevated blood low-density lipoprotein cholesterol carries a risk for metabolic and cardiovascular disorders, whereas high-density lipoprotein (HDL) cholesterol in the blood is thought to be beneficial. Circulating cholesterol is the balance among dietary cholesterol absorption, hepatic synthesis and secretion, and the metabolism of lipoproteins by various tissues. We found that the CNS is also an important regulator of cholesterol in rodents. Inhibiting the brain's melanocortin system by pharmacological, genetic or endocrine mechanisms increased circulating HDL cholesterol by reducing its uptake by the liver independent of food intake or body weight. Our data suggest that a neural circuit in the brain is directly involved in the control of cholesterol metabolism by the liver.


Assuntos
HDL-Colesterol/sangue , Grelina/fisiologia , Hipotálamo/metabolismo , Fígado/metabolismo , Melanocortinas/metabolismo , Animais , Peso Corporal , Antígenos CD36/metabolismo , Ingestão de Alimentos , Grelina/genética , Peptídeo 1 Semelhante ao Glucagon/fisiologia , Homeostase/fisiologia , Camundongos , Camundongos Knockout , Sistemas Neurossecretores/metabolismo , Ratos , Ratos Wistar , Receptores de Melanocortina/genética , Receptores de Melanocortina/fisiologia , Receptores Depuradores Classe B/metabolismo
15.
Eur J Nutr ; 46(7): 397-405, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17882348

RESUMO

BACKGROUND: Conflicting evidence suggests a possible role for vitamin E in mammalian glucose metabolism and the protection from type 2 diabetes. The alpha-tocopherol transfer protein (alpha-TTP) mediates the transfer of alpha-tocopherol (alpha-TOH) from hepatocytes to very-low-density lipoproteins, thereby controlling plasma levels of alpha-TOH. AIM OF THE STUDY: The aim of this study was to investigate the putative impact of alpha-TTP knock-out on glucose metabolism in mice. METHODS: Mice deficient for alpha-TTP and wild-type control littermates were fed a diet containing 200 mg alpha-tocopheryl acetate per kg to ameliorate alpha-TOH deficiency in knock-out mice. We investigated fasting and postprandial plasma glucose, insulin and triglyceride levels of both groups of mice at different ages. All genotypes and age groups were further subjected to glucose and insulin tolerance tests, and number of insulin-producing islets of Langerhans were determined. RESULTS: Plasma alpha-TOH levels of knock-out mice were 34% the levels of wild-type controls: Any signs of alpha-TOH deficiency were absent at any age. Unexpectedly, serum glucose levels both in the fasted and in the fed state were lower in alpha-TTP-deficient mice at any age. Removal rates for intraperitoneally injected glucose were found to be significantly increased in young alpha-TTP-deficient mice. This improved glucose tolerance was caused by increased insulin secretion in response to an intraperitoneal glucose challenge due to an increased number of pancreatic islets, as well as by increased sensitivity to intraperitoneally injected insulin, both significantly promoting glucose metabolism in alpha-TTP-deficient mice. CONCLUSIONS: Our findings suggest that alpha-TTP-deficiency in states of alpha-TOH supplementation unexpectedly promotes glucose tolerance in mice due to both increased insulin secretion and insulin action, suggesting differential roles of alpha-TTP and alpha-TOH in the pathogenesis of type 2 diabetes mellitus.


Assuntos
Proteínas de Transporte/fisiologia , Glucose/metabolismo , Insulina/sangue , Triglicerídeos/sangue , alfa-Tocoferol/sangue , Fatores Etários , Animais , Proteínas de Transporte/genética , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/prevenção & controle , Jejum/sangue , Feminino , Teste de Tolerância a Glucose , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Período Pós-Prandial , Deficiência de Vitamina E/complicações , alfa-Tocoferol/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA