Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomolecules ; 11(12)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34944521

RESUMO

Type-II diabetes mellitus (T2DM) results from a combination of genetic and lifestyle factors, and the prevalence of T2DM is increasing worldwide. Clinically, both α-glucosidase and α-amylase enzymes inhibitors can suppress peaks of postprandial glucose with surplus adverse effects, leading to efforts devoted to urgently seeking new anti-diabetes drugs from natural sources for delayed starch digestion. This review attempts to explore 10 families e.g., Bignoniaceae, Ericaceae, Dryopteridaceae, Campanulaceae, Geraniaceae, Euphorbiaceae, Rubiaceae, Acanthaceae, Rutaceae, and Moraceae as medicinal plants, and folk and herb medicines for lowering blood glucose level, or alternative anti-diabetic natural products. Many natural products have been studied in silico, in vitro, and in vivo assays to restrain hyperglycemia. In addition, natural products, and particularly polyphenols, possess diverse structures for exploring them as inhibitors of α-glucosidase and α-amylase. Interestingly, an in silico discovery approach using natural compounds via virtual screening could directly target α-glucosidase and α-amylase enzymes through Monte Carto molecular modeling. Autodock, MOE-Dock, Biovia Discovery Studio, PyMOL, and Accelrys have been used to discover new candidates as inhibitors or activators. While docking score, binding energy (Kcal/mol), the number of hydrogen bonds, or interactions with critical amino acid residues have been taken into concerning the reliability of software for validation of enzymatic analysis, in vitro cell assay and in vivo animal tests are required to obtain leads, hits, and candidates in drug discovery and development.


Assuntos
Diabetes Mellitus Tipo 2/enzimologia , Hipoglicemiantes/farmacologia , Plantas Medicinais/química , Polifenóis/farmacologia , alfa-Amilases/metabolismo , alfa-Glucosidases/metabolismo , Simulação por Computador , Diabetes Mellitus Tipo 2/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/uso terapêutico , Humanos , Ligação de Hidrogênio , Hipoglicemiantes/química , Hipoglicemiantes/uso terapêutico , Simulação de Acoplamento Molecular , Polifenóis/química , Polifenóis/uso terapêutico , alfa-Amilases/química , alfa-Glucosidases/química
2.
Biomed Res Int ; 2020: 3497107, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32337241

RESUMO

Celastrus hindsii is a potential source of flavonoids with biological activities. This study aimed to develop an ultrasound-assisted technique for extracting flavonoids from leaves of C. hindsii. Response surface methodology was employed to optimize the extraction conditions for maximizing the total flavonoid content (TFC). A maximum TFC of 23.6 mg QE/g was obtained under the extraction conditions of ultrasonic power of 130 W, extraction temperature of 40°C, extraction time of 29 min, and ethanol concentration of 65%. The flavonoid-rich extracts were then studied for their antioxidant and anticancer activities. The results showed that the C. hindsii leaf extract exhibited potent radical scavenging activities against DPPH (IC50 of 164.85 µg/mL) and ABTS (IC50 of 89.05 µg/mL). The extract also significantly inhibited the growth of 3 cancer cell lines MCF7, A549, and HeLa with the IC50 values of 88.1 µg/mL, 120.4 µg/mL, and 118.4 µg/mL, respectively. Notably, the extract had no cytotoxicity effect on HK2 normal kidney cell line. This study suggests that flavonoid-rich extract is a promising antioxidant and anticancer agent and that ultrasound-assisted extraction is an efficient method for extracting flavonoids from C. hindsii leaves.


Assuntos
Antineoplásicos/isolamento & purificação , Antioxidantes/isolamento & purificação , Celastrus/química , Fracionamento Químico/métodos , Flavonoides/isolamento & purificação , Antineoplásicos/química , Antineoplásicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Flavonoides/química , Flavonoides/farmacologia , Células HeLa , Humanos , Extratos Vegetais/química , Folhas de Planta/química , Sonicação
3.
Medicina (Kaunas) ; 55(5)2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067805

RESUMO

Background and objectives: The percutaneous route is an interesting and inventive investigation field of drug delivery. However, it is challenging for drug molecules to pass through the skins surface, which is a characterized by its permeability barrier. The purpose of this study is to look at the effect of some penetration enhancers on in vivo permeation of insulin and insulin sensitizers (curcumin and rutin) through diabetes-induced mouse skin. Materials and Methods: Sting crude extracts of Dendrocnide meyeniana, Urtica thunbergiana Sieb. and Zucc, and Alocasia odora (Lodd.) Spach were used as the penetration enhancers. Mouse skin irritation was tested by smearing the enhancers for the measurements at different time points and the cell viability of the HaCaT human skin keratinocytes, which was determined by Trypan blue exclusion and MTT assays to evaluate human biosafety for these extracts after the mouse skin permeation experiments. Results: All enhancers induced a slight erythema without edema on the mouse skin that completely recovered after 6 h from the enhancer smears as compared with normal mouse skin. Furthermore, no damaged cells were found in the HaCaT keratinocytes under sting crude extract treatments. The blood sugar level in the diabetic mice treated with the insulin or insulin sensitizers, decreased significantly (p < 0.05) in the presence of enhancers. The area under the curve (AUC) values of transdermal drug delivery (TDD) ranged from 42,000 ± 5000 mg/dL x min without enhancers, to 30,000 ± 2000 mg/dL x min in the presence of enhancers. Conclusions: This study exhibited that natural plant extracts could be preferred over the chemically synthesized molecules and are safe and potent penetration enhancers for stimulating the transdermal absorption of drugs.


Assuntos
Administração Cutânea , Hipoglicemiantes/administração & dosagem , Aizoaceae , Análise de Variância , Teste de Tolerância a Glucose/métodos , Humanos , Hipoglicemiantes/uso terapêutico , Extratos Vegetais/uso terapêutico , Rutaceae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA