Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 107(17): 5367-5378, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37436482

RESUMO

Fermentation technology using endophytes is considered a potential alternative approach for producing pharmaceutical compounds like podophyllotoxin (PTOX). In this study, fungus TQN5T (VCCM 44284) was selected from endophytic fungi isolated from Dysosma versipellis in Vietnam for PTOX production through TLC. The presence of PTOX in TQN5T was further confirmed by HPLC. Molecular identification indicated TQN5T as Fusarium proliferatum with 99.43% identity. This result was asserted by morphological characteristics such as white cottony, filamentous colony, layer and branched mycelium, and clear hyphae septa. Cytotoxic assay indicated both biomass extract and culture filtrate of TQN5T presented strong cytotoxicity on LU-1 and HepG2 with IC50 of 0.11, 0.20, 0.041, and 0071, respectively, implying anti-cancer compounds were accumulated in the mycelium and secreted into the medium. Further, the production of PTOX in TQN5T was investigated in the fermentation condition supplemented with 10 µg/ml of host plant extract or phenylalanine as elicitors. The results revealed a significantly higher amount of PTOX in the PDB + PE and PDB + PA at all studied time points in comparison with PDB (control). Especially, after 168 h of culture, PTOX content in the PDB with plant extract reached the peak with 314 µg/g DW which is 10% higher than the best yield of PTOX in previous studies, denoting F. proliferatum TQN5T as a promising PTOX producer. This is the first study on enhancing the PTOX production in endophytic fungi by supplementing phenylalanine-a precursor for PTOX biosynthesis in plants into fermented media, suggesting a common PTOX biosynthetic pathway between host plant and endophytes. KEY POINTS: • Fusarium proliferatum TQN5T was proven for PTOX production. • Both mycelia extract and spent broth extract of Fusarium proliferatum TQN5T presented strong cytotoxicity on cancer cell lines LU-1 and HepG2. • The supplementation of 10 µg/ml host plant extract and phenylalanine into fermentation media of F. proliferatum TQN5T improved the yield of PTOX.


Assuntos
Fusarium , Podofilotoxina , Podofilotoxina/metabolismo , Endófitos/metabolismo , Fusarium/metabolismo , Extratos Vegetais/metabolismo , Plantas/metabolismo
2.
Sci Rep ; 12(1): 14627, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36028578

RESUMO

Tobacco is an important commercial crop and a rich source of alkaloids for pharmaceutical and agricultural applications. However, its yield can be reduced by up to 70% due to virus infections, especially by a potyvirus Potato virus Y (PVY). The replication of PVY relies on host factors, and eukaryotic translation initiation factor 4Es (eIF4Es) have already been identified as recessive resistance genes against potyviruses in many plant species. To investigate the molecular basis of PVY resistance in the widely cultivated allotetraploid tobacco variety K326, we developed a dual guide RNA CRISPR/Cas9 system for combinatorial gene editing of two clades, eIF4E1 (eIF4E1-S and eIF4E1-T) and eIF4E2 (eIF4E2-S and eIF4E2-T) in the eIF4E gene family comprising six members in tobacco. We screened for CRISPR/Cas9-induced mutations by heteroduplex analysis and Sanger sequencing, and monitored PVYO accumulation in virus challenged regenerated plants by DAS-ELISA both in T0 and T1 generations. We found that all T0 lines carrying targeted mutations in the eIF4E1-S gene displayed enhanced resistance to PVYO confirming previous reports. More importantly, our combinatorial approach revealed that eIF4E1-S is necessary but not sufficient for complete PVY resistance. Only the quadruple mutants harboring loss-of-function mutations in eIF4E1-S, eIF4E1-T, eIF4E2-S and eIF4E2-T showed heritable high-level resistance to PVYO in tobacco. Our work highlights the importance of understanding host factor redundancy in virus replication and provides a roadmap to generate virus resistance by combinatorial CRISPR/Cas9-mediated editing in non-model crop plants with complex genomes.


Assuntos
Potyvirus , Solanum tuberosum , Sistemas CRISPR-Cas , Mutação , Doenças das Plantas , Nicotiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA