Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Cell Rep ; 42(4): 112399, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37060561

RESUMO

Hepatic cholesterol overload promotes steatohepatitis. Insufficient understanding of liver stress defense impedes therapy development. Here, we elucidate the role of stress defense transcription factors, nuclear factor erythroid 2 related factor-1 (NRF1) and -2 (NRF2), in counteracting cholesterol-linked liver stress. Using a diet that increases liver cholesterol storage, expression profiles and phenotypes of liver from mice with hepatocyte deficiency of NRF1, NRF2, or both are compared with controls, and chromatin immunoprecipitation sequencing is undertaken to identify target genes. Results show NRF1 and NRF2 co-regulate genes that eliminate cholesterol and mitigate inflammation and oxidative damage. Combined deficiency, but not deficiency of either alone, results in severe steatohepatitis, hepatic cholesterol overload and crystallization, altered bile acid metabolism, and decreased biliary cholesterol. Moreover, therapeutic effects of NRF2-activating drug bardoxolone require NRF1 and are supplemented by NRF1 overexpression. Thus, we discover complementary gene programming by NRF1 and NRF2 that counteract cholesterol-associated fatty liver disease progression.


Assuntos
Fator 2 Relacionado a NF-E2 , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Colesterol/metabolismo , Regulação da Expressão Gênica , Fígado/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estresse Oxidativo
3.
Mol Cell ; 80(6): 1104-1122.e9, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33259812

RESUMO

Human transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causative pathogen of the COVID-19 pandemic, exerts a massive health and socioeconomic crisis. The virus infects alveolar epithelial type 2 cells (AT2s), leading to lung injury and impaired gas exchange, but the mechanisms driving infection and pathology are unclear. We performed a quantitative phosphoproteomic survey of induced pluripotent stem cell-derived AT2s (iAT2s) infected with SARS-CoV-2 at air-liquid interface (ALI). Time course analysis revealed rapid remodeling of diverse host systems, including signaling, RNA processing, translation, metabolism, nuclear integrity, protein trafficking, and cytoskeletal-microtubule organization, leading to cell cycle arrest, genotoxic stress, and innate immunity. Comparison to analogous data from transformed cell lines revealed respiratory-specific processes hijacked by SARS-CoV-2, highlighting potential novel therapeutic avenues that were validated by a high hit rate in a targeted small molecule screen in our iAT2 ALI system.


Assuntos
Células Epiteliais Alveolares/metabolismo , COVID-19/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo , SARS-CoV-2/metabolismo , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/virologia , Animais , Antivirais , COVID-19/genética , COVID-19/patologia , Chlorocebus aethiops , Efeito Citopatogênico Viral , Citoesqueleto , Avaliação Pré-Clínica de Medicamentos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Pluripotentes Induzidas/virologia , Fosfoproteínas/genética , Transporte Proteico , Proteoma/genética , SARS-CoV-2/genética , Transdução de Sinais , Células Vero , Tratamento Farmacológico da COVID-19
4.
J Proteome Res ; 14(1): 5-21, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25367773

RESUMO

Over the past several years, mitochondrial dysfunction has been linked to an increasing number of human illnesses, making mitochondrial proteins (MPs) an ever more appealing target for therapeutic intervention. With 20% of the mitochondrial proteome (312 of an estimated 1500 MPs) having known interactions with small molecules, MPs appear to be highly targetable. Yet, despite these targeted proteins functioning in a range of biological processes (including induction of apoptosis, calcium homeostasis, and metabolism), very few of the compounds targeting MPs find clinical use. Recent work has greatly expanded the number of proteins known to localize to the mitochondria and has generated a considerable increase in MP 3D structures available in public databases, allowing experimental screening and in silico prediction of mitochondrial drug targets on an unprecedented scale. Here, we summarize the current literature on clinically active drugs that target MPs, with a focus on how existing drug targets are distributed across biochemical pathways and organelle substructures. Also, we examine current strategies for mitochondrial drug discovery, focusing on genetic, proteomic, and chemogenomic assays, and relevant model systems. As cell models and screening techniques improve, MPs appear poised to emerge as relevant targets for a wide range of complex human diseases, an eventuality that can be expedited through systematic analysis of MP function.


Assuntos
Mitocôndrias/metabolismo , Terapia de Alvo Molecular , Animais , Avaliação Pré-Clínica de Medicamentos , Humanos , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/fisiologia , Proteoma/metabolismo
5.
Bioinformatics ; 31(3): 306-10, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25316676

RESUMO

MOTIVATION: The model bacterium Escherichia coli is among the best studied prokaryotes, yet nearly half of its proteins are still of unknown biological function. This is despite a wealth of available large-scale physical and genetic interaction data. To address this, we extended the GeneMANIA function prediction web application developed for model eukaryotes to support E.coli. RESULTS: We integrated 48 distinct E.coli functional interaction datasets and used the GeneMANIA algorithm to produce thousands of novel functional predictions and prioritize genes for further functional assays. Our analysis achieved cross-validation performance comparable to that reported for eukaryotic model organisms, and revealed new functions for previously uncharacterized genes in specific bioprocesses, including components required for cell adhesion, iron-sulphur complex assembly and ribosome biogenesis. The GeneMANIA approach for network-based function prediction provides an innovative new tool for probing mechanisms underlying bacterial bioprocesses. CONTACT: gary.bader@utoronto.ca; mohan.babu@uregina.ca SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Redes Reguladoras de Genes , Software , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA