Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
JAMA ; 323(24): 2503-2511, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32573669

RESUMO

Importance: Widespread adoption of rapid genomic testing in pediatric critical care requires robust clinical and laboratory pathways that provide equitable and consistent service across health care systems. Objective: To prospectively evaluate the performance of a multicenter network for ultra-rapid genomic diagnosis in a public health care system. Design, Setting, and Participants: Descriptive feasibility study of critically ill pediatric patients with suspected monogenic conditions treated at 12 Australian hospitals between March 2018 and February 2019, with data collected to May 2019. A formal implementation strategy emphasizing communication and feedback, standardized processes, coordination, distributed leadership, and collective learning was used to facilitate adoption. Exposures: Ultra-rapid exome sequencing. Main Outcomes and Measures: The primary outcome was time from sample receipt to ultra-rapid exome sequencing report. The secondary outcomes were the molecular diagnostic yield, the change in clinical management after the ultra-rapid exome sequencing report, the time from hospital admission to the laboratory report, and the proportion of laboratory reports returned prior to death or hospital discharge. Results: The study population included 108 patients with a median age of 28 days (range, 0 days to 17 years); 34% were female; and 57% were from neonatal intensive care units, 33% were from pediatric intensive care units, and 9% were from other hospital wards. The mean time from sample receipt to ultra-rapid exome sequencing report was 3.3 days (95% CI, 3.2-3.5 days) and the median time was 3 days (range, 2-7 days). The mean time from hospital admission to ultra-rapid exome sequencing report was 17.5 days (95% CI, 14.6-21.1 days) and 93 reports (86%) were issued prior to death or hospital discharge. A molecular diagnosis was established in 55 patients (51%). Eleven diagnoses (20%) resulted from using the following approaches to augment standard exome sequencing analysis: mitochondrial genome sequencing analysis, exome sequencing-based copy number analysis, use of international databases to identify novel gene-disease associations, and additional phenotyping and RNA analysis. In 42 of 55 patients (76%) with a molecular diagnosis and 6 of 53 patients (11%) without a molecular diagnosis, the ultra-rapid exome sequencing result was considered as having influenced clinical management. Targeted treatments were initiated in 12 patients (11%), treatment was redirected toward palliative care in 14 patients (13%), and surveillance for specific complications was initiated in 19 patients (18%). Conclusions and Relevance: This study suggests feasibility of ultra-rapid genomic testing in critically ill pediatric patients with suspected monogenic conditions in the Australian public health care system. However, further research is needed to understand the clinical value of such testing, and the generalizability of the findings to other health care settings.


Assuntos
Estado Terminal , Sequenciamento do Exoma/métodos , Doenças Genéticas Inatas/genética , Testes Genéticos/métodos , Austrália , Criança , Pré-Escolar , Estudos de Viabilidade , Feminino , Doenças Genéticas Inatas/diagnóstico , Humanos , Lactente , Recém-Nascido , Masculino , Programas Nacionais de Saúde , Estudos Prospectivos , Fatores de Tempo
2.
Semin Pediatr Neurol ; 26: 2-9, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29961509

RESUMO

Brown-Vialetto-van Laere syndrome is characterized by a progressive sensorimotor neuropathy, optic atrophy, hearing loss, bulbar dysfunction, and respiratory insufficiency. Mutations in SLC52A2 and SLC52A3, encoding riboflavin transporters RFVT2 and RFVT3, respectively, are the genetic basis of this disorder, often referred to as riboflavin transporter deficiency types 2 and 3, respectively. We present cases of both types of riboflavin transporter deficiency, highlighting the distinguishing clinical features of a rapidly progressive motor or sensorimotor axonal neuropathy, optic atrophy, sensorineural hearing loss, and bulbar dysfunction. One child presented with isolated central apnea and hypoventilation, not previously described in genetically confirmed Brown-Vialetto-van Laere, later complicated by diaphragmatic paralysis secondary to phrenic nerve palsy. Magnetic resonance imaging showed T2 hyperintensity in the dorsal spinal cord in 2 children, as well as previously unreported cervical nerve root enlargement and cauda equina ventral nerve root enhancement in 1 child. Novel homozygous mutations were identified in each gene-a NM_024531.4(SLC52A2):c.505C > T, NP_078807.1(SLC52A2):p.(Arg169Cys) variant in SLC52A2 and NM_033409.3(SLC52A3):c.1316G > A, NP_212134.3(SLC52A3):p.(Gly439Asp) variant in SLC52A3. Both treated children showed improvement on high-dose riboflavin supplementation, highlighting the importance of early recognition of this treatable clinical entity.


Assuntos
Paralisia Bulbar Progressiva/diagnóstico por imagem , Paralisia Bulbar Progressiva/genética , Perda Auditiva Neurossensorial/diagnóstico por imagem , Perda Auditiva Neurossensorial/genética , Encéfalo/diagnóstico por imagem , Paralisia Bulbar Progressiva/fisiopatologia , Paralisia Bulbar Progressiva/terapia , Pré-Escolar , Consanguinidade , Feminino , Perda Auditiva Neurossensorial/fisiopatologia , Perda Auditiva Neurossensorial/terapia , Humanos , Lactente , Masculino , Proteínas de Membrana Transportadoras/genética , Receptores Acoplados a Proteínas G/genética , Medula Espinal/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA