Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Clin EEG Neurosci ; 53(1): 79-90, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33913351

RESUMO

Background. A number of recent randomized controlled trials reported the efficacy of brain-computer interface (BCI) for upper-limb stroke rehabilitation compared with other therapies. Despite the encouraging results reported, there is a significant variance in the reported outcomes. This paper aims to investigate the effectiveness of different BCI designs on poststroke upper-limb rehabilitation. Methods. The effect sizes of pooled and individual studies were assessed by computing Hedge's g values with a 95% confidence interval. Subgroup analyses were also performed to examine the impact of different BCI designs on the treatment effect. Results. The study included 12 clinical trials involving 298 patients. The analysis showed that the BCI yielded significant superior short-term and long-term efficacy in improving the upper-limb motor function compared to the control therapies (Hedge's g = 0.73 and 0.33, respectively). Based on our subgroup analyses, the BCI studies that used the intention of movement had a higher effect size compared to those used motor imagery (Hedge's g = 1.21 and 0.55, respectively). The BCI studies using band power features had a significantly higher effect size than those using filter bank common spatial patterns features (Hedge's g = 1.25 and - 0.23, respectively). Finally, the studies that used functional electrical stimulation as the BCI feedback had the highest effect size compared to other devices (Hedge's g = 1.2). Conclusion. This meta-analysis confirmed the effectiveness of BCI for upper-limb rehabilitation. Our findings support the use of band power features, the intention of movement, and the functional electrical stimulation in future BCI designs for poststroke upper-limb rehabilitation.


Assuntos
Interfaces Cérebro-Computador , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Eletroencefalografia , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Recuperação de Função Fisiológica , Extremidade Superior
2.
IEEE Trans Biomed Eng ; 67(3): 786-795, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31180829

RESUMO

OBJECTIVE: This single-arm multisite trial investigates the efficacy of the neurostyle brain exercise therapy towards enhanced recovery (nBETTER) system, an electroencephalogram (EEG)-based motor imagery brain-computer interface (MI-BCI) employing visual feedback for upper-limb stroke rehabilitation, and the presence of EEG correlates of mental fatigue during BCI usage. METHODS: A total of 13 recruited stroke patients underwent thrice-weekly nBETTER therapy coupled with standard arm therapy over six weeks. Upper-extremity Fugl-Meyer motor assessment (FMA) scores were measured at baseline (week 0), post-intervention (week 6), and follow-ups (weeks 12 and 24). In total, 11/13 patients (mean age 55.2 years old, mean post-stroke duration 333.7 days, mean baseline FMA 35.5) completed the study. RESULTS: Significant FMA gains relative to baseline were observed at weeks 6 and 24. Retrospectively comparing to the standard arm therapy (SAT) control group and BCI with haptic knob (BCI-HK) intervention group from a previous similar study, the SAT group had no significant gains, whereas the BCI-HK group had significant gains at weeks 6, 12, and 24. EEG analysis revealed significant positive correlations between relative beta power and BCI performance in the frontal and central brain regions, suggesting that mental fatigue may contribute to poorer BCI performance. CONCLUSION: nBETTER, an EEG-based MI-BCI employing only visual feedback, helps stroke survivors sustain short-term FMA improvement. Analysis of EEG relative beta power indicates that mental fatigue may be present. SIGNIFICANCE: This study adds nBETTER to the growing literature of safe and effective stroke rehabilitation MI-BCI, and suggests an additional fatigue-monitoring role in future such BCI.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia/métodos , Fadiga Mental/fisiopatologia , Reabilitação do Acidente Vascular Cerebral/métodos , Extremidade Superior/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Retroalimentação Sensorial/fisiologia , Humanos , Imaginação/fisiologia , Pessoa de Meia-Idade , Destreza Motora/fisiologia , Adulto Jovem
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 1078-1081, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30440578

RESUMO

Non-invasive brain computer interface (BCI) has been successfully used to control cursors, helicopters and robotic arms. However, this technology is not widely adopted by people with late-stage amyotrophic lateral sclerosis (ALS) due to poor effectiveness. In this study, we attempt to assess the cognitive state of a completely locked-in ALS subject, and her ability to use motor imagery-based BCI for control. The subject achieves above chance level accuracies for both open loop (62.2%) and closed-loop (68.7%) 2-class movement vs. idle decoding. We also observe a prominent theta oscillation with peak frequency at 4.5 Hz during the experiments. Quantification shows that the theta oscillatory power increases during motor imagery tasks compared to idle tasks for both open-loop as well as closed-loop BCI tasks. Furthermore, for closed-loop sessions, theta oscillation power correlates positively with feedback accuracy during movement tasks, and negatively with feedback accuracy during idle tasks. Our study demonstrates the feasibility of motor imagery-based BCI for late-stage ALS subjects, and highlights the importance of feedback during BCI implementation.


Assuntos
Esclerose Lateral Amiotrófica , Interfaces Cérebro-Computador , Eletroencefalografia , Feminino , Humanos , Imagens, Psicoterapia , Movimento
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 1988-1991, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30440789

RESUMO

Subject-specific calibration plays an important role in electroencephalography (EEG)-based Brain-Computer Interface (BCI) for Motor Imagery (MI) detection. A calibration session is often introduced to build a subject specific model, which then can be deployed into BCI system for MI detection in the following rehabilitation sessions. The model is termed as a fixed calibration model. Progressive adaptive models can also be built by using data not only from calibration session, but also from available rehabilitation sessions. It was reported that the progressive adaptive model yielded significant improved MI detection compared to the fixed model in a retrospective clinical study. In this work, we deploy the progressive adaptation model in a BCI-based stroke rehabilitation system and bring it online. We dub this system nBETTER (Neurostyle Brain Exercise Therapy Towards Enhanced Recovery). A clinical trial using the nBETTER system was conducted to evaluate the performance of 11 stroke patients who underwent a calibration session followed by 18 rehabilitation sessions over 6 weeks. We conduct retrospective analysis to compare the performance of various modeling strategies: the fixed calibration model, the online progressive adaptation model and a light-weight adaptation model, where the second one is generated online by nBETTER system and the other two models are obtained retrospectively. The mean accuracy of the three models across 11 subjects are 68.17%, 74.04% and 74.53% respectively. Statistical test conducted on the three groups using ANOVA yields a p-value of 9.83-e06. The test result shows that the two adaptation models both have significant different mean from fixed mode. Hence our study confirmed the effectiveness of using the progressive adaptive model for EEGbased BCI to detect MI in an online setting.


Assuntos
Eletroencefalografia , Interfaces Cérebro-Computador , Humanos , Imagens, Psicoterapia , Imaginação , Estudos Retrospectivos , Reabilitação do Acidente Vascular Cerebral
5.
Neural Comput Appl ; 28(11): 3259-3272, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29051688

RESUMO

Motor imagery-based brain-computer interface (MI-BCI) has been proposed as a rehabilitation tool to facilitate motor recovery in stroke. However, the calibration of a BCI system is a time-consuming and fatiguing process for stroke patients, which leaves reduced time for actual therapeutic interaction. Studies have shown that passive movement (PM) (i.e., the execution of a movement by an external agency without any voluntary motions) and motor imagery (MI) (i.e., the mental rehearsal of a movement without any activation of the muscles) induce similar EEG patterns over the motor cortex. Since performing PM is less fatiguing for the patients, this paper investigates the effectiveness of calibrating MI-BCIs from PM for stroke subjects in terms of classification accuracy. For this purpose, a new adaptive algorithm called filter bank data space adaptation (FB-DSA) is proposed. The FB-DSA algorithm linearly transforms the band-pass-filtered MI data such that the distribution difference between the MI and PM data is minimized. The effectiveness of the proposed algorithm is evaluated by an offline study on data collected from 16 healthy subjects and 6 stroke patients. The results show that the proposed FB-DSA algorithm significantly improved the classification accuracies of the PM and MI calibrated models (p < 0.05). According to the obtained classification accuracies, the PM calibrated models that were adapted using the proposed FB-DSA algorithm outperformed the MI calibrated models by an average of 2.3 and 4.5 % for the healthy and stroke subjects respectively. In addition, our results suggest that the disparity between MI and PM could be stronger in the stroke patients compared to the healthy subjects, and there would be thus an increased need to use the proposed FB-DSA algorithm in BCI-based stroke rehabilitation calibrated from PM.

6.
Sci Rep ; 7(1): 9222, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28835651

RESUMO

Brain-computer interface-assisted motor imagery (MI-BCI) or transcranial direct current stimulation (tDCS) has been used in stroke rehabilitation, though their combinatory effect is unknown. We investigated brain plasticity following a combined MI-BCI and tDCS intervention in chronic subcortical stroke patients with unilateral upper limb disability. Nineteen patients were randomized into tDCS and sham-tDCS groups. Diffusion and perfusion MRI, and transcranial magnetic stimulation were used to study structural connectivity, cerebral blood flow (CBF), and corticospinal excitability, respectively, before and 4 weeks after the 2-week intervention. After quality control, thirteen subjects were included in the CBF analysis. Eleven healthy controls underwent 2 sessions of MRI for reproducibility study. Whereas motor performance showed comparable improvement, long-lasting neuroplasticity can only be detected in the tDCS group, where white matter integrity in the ipsilesional corticospinal tract and bilateral corpus callosum was increased but sensorimotor CBF was decreased, particularly in the ipsilesional side. CBF change in the bilateral parietal cortices also correlated with motor function improvement, consistent with the increased white matter integrity in the corpus callosum connecting these regions, suggesting an involvement of interhemispheric interaction. The preliminary results indicate that tDCS may facilitate neuroplasticity and suggest the potential for refining rehabilitation strategies for stroke patients.


Assuntos
Interfaces Cérebro-Computador , Imagens, Psicoterapia , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/terapia , Estimulação Transcraniana por Corrente Contínua , Adulto , Idoso , Doença Crônica , Feminino , Humanos , Imagens, Psicoterapia/métodos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Plasticidade Neuronal , Acidente Vascular Cerebral/diagnóstico , Reabilitação do Acidente Vascular Cerebral/métodos
7.
Arch Phys Med Rehabil ; 96(3 Suppl): S79-87, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25721551

RESUMO

OBJECTIVE: To investigate the efficacy and effects of transcranial direct current stimulation (tDCS) on motor imagery brain-computer interface (MI-BCI) with robotic feedback for stroke rehabilitation. DESIGN: A sham-controlled, randomized controlled trial. SETTING: Patients recruited through a hospital stroke rehabilitation program. PARTICIPANTS: Subjects (N=19) who incurred a stroke 0.8 to 4.3 years prior, with moderate to severe upper extremity functional impairment, and passed BCI screening. INTERVENTIONS: Ten sessions of 20 minutes of tDCS or sham before 1 hour of MI-BCI with robotic feedback upper limb stroke rehabilitation for 2 weeks. Each rehabilitation session comprised 8 minutes of evaluation and 1 hour of therapy. MAIN OUTCOME MEASURES: Upper extremity Fugl-Meyer Motor Assessment (FMMA) scores measured end-intervention at week 2 and follow-up at week 4, online BCI accuracies from the evaluation part, and laterality coefficients of the electroencephalogram (EEG) from the therapy part of the 10 rehabilitation sessions. RESULTS: FMMA score improved in both groups at week 4, but no intergroup differences were found at any time points. Online accuracies of the evaluation part from the tDCS group were significantly higher than those from the sham group. The EEG laterality coefficients from the therapy part of the tDCS group were significantly higher than those of the sham group. CONCLUSIONS: The results suggest a role for tDCS in facilitating motor imagery in stroke.


Assuntos
Interfaces Cérebro-Computador , Reabilitação do Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua/métodos , Extremidade Superior , Adulto , Idoso , Eletroencefalografia , Feminino , Humanos , Imagens, Psicoterapia , Masculino , Pessoa de Meia-Idade , Modalidades de Fisioterapia , Recuperação de Função Fisiológica , Robótica
8.
Clin EEG Neurosci ; 46(4): 310-20, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24756025

RESUMO

Electroencephalography (EEG)-based motor imagery (MI) brain-computer interface (BCI) technology has the potential to restore motor function by inducing activity-dependent brain plasticity. The purpose of this study was to investigate the efficacy of an EEG-based MI BCI system coupled with MIT-Manus shoulder-elbow robotic feedback (BCI-Manus) for subjects with chronic stroke with upper-limb hemiparesis. In this single-blind, randomized trial, 26 hemiplegic subjects (Fugl-Meyer Assessment of Motor Recovery After Stroke [FMMA] score, 4-40; 16 men; mean age, 51.4 years; mean stroke duration, 297.4 days), prescreened with the ability to use the MI BCI, were randomly allocated to BCI-Manus or Manus therapy, lasting 18 hours over 4 weeks. Efficacy was measured using upper-extremity FMMA scores at weeks 0, 2, 4 and 12. ElEG data from subjects allocated to BCI-Manus were quantified using the revised brain symmetry index (rBSI) and analyzed for correlation with the improvements in FMMA score. Eleven and 15 subjects underwent BCI-Manus and Manus therapy, respectively. One subject in the Manus group dropped out. Mean total FMMA scores at weeks 0, 2, 4, and 12 weeks improved for both groups: 26.3±10.3, 27.4±12.0, 30.8±13.8, and 31.5±13.5 for BCI-Manus and 26.6±18.9, 29.9±20.6, 32.9±21.4, and 33.9±20.2 for Manus, with no intergroup differences (P=.51). More subjects attained further gains in FMMA scores at week 12 from BCI-Manus (7 of 11 [63.6%]) than Manus (5 of 14 [35.7%]). A negative correlation was found between the rBSI and FMMA score improvement (P=.044). BCI-Manus therapy was well tolerated and not associated with adverse events. In conclusion, BCI-Manus therapy is effective and safe for arm rehabilitation after severe poststroke hemiparesis. Motor gains were comparable to those attained with intensive robotic therapy (1,040 repetitions/session) despite reduced arm exercise repetitions using EEG-based MI-triggered robotic feedback (136 repetitions/session). The correlation of rBSI with motor improvements suggests that the rBSI can be used as a prognostic measure for BCI-based stroke rehabilitation.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Imagens, Psicoterapia , Robótica , Reabilitação do Acidente Vascular Cerebral , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modalidades de Fisioterapia , Recuperação de Função Fisiológica , Resultado do Tratamento , Extremidade Superior
9.
Artigo em Inglês | MEDLINE | ID: mdl-24109674

RESUMO

Brain-computer interface (BCI) technology has the potential as a post-stroke rehabilitation tool, and the efficacy of the technology is most often demonstrated through output peripherals such as robots, orthosis and computers. In this study, the EEG signals recorded during the course of upper limb stroke rehabilitaion using motor imagery BCI were analyzed to better understand the effect of BCI therapy for post-stroke rehabilitation. The stroke patients recruited underwent 10 sessions of 1-hour BCI with robotic feedback for 2 weeks, 5 times a week. The analysis was performed by computing the coherences of the EEG in the lesion and contralesion side of the hemisphere from each session, and the coherence index of the lesion hemisphere (0 ≤ CI ≤ 1) was computed. The coherence index represents the rate of activation of the lesion hemisphere, and the correlation with the Fugl-Meyer assessment (FMA) before and after the BCI therapy was investigated. Significant improvement in the FMA scores was reported for five of the six patients (p = 0.01). The analysis showed that the number of sessions with CI ≥ 0.5 correlated with the change in the FMA scores. This suggests that post-stroke motor recovery best results from the activation in the lesion hemisphere, which is in agreement with previous studies performed using multimodal imaging technologies.


Assuntos
Braço/fisiopatologia , Interfaces Cérebro-Computador , Eletroencefalografia/métodos , Imagens, Psicoterapia/métodos , Atividade Motora , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral/fisiopatologia , Retroalimentação , Humanos , Robótica/métodos , Fatores de Tempo
10.
Artigo em Inglês | MEDLINE | ID: mdl-24109715

RESUMO

The performance degradation for session to session classification in brain computer interface is a critical problem. This paper proposes a novel method for model adaptation based on motor imagery of swallow EEG signal for dysphagia rehabilitation. A small amount of calibration testing data is utilized to select the model catering for test data. The features of the training and calibration testing data are firstly clustered and each cluster is labeled by the dominant label of the training data. The cluster with the minimum impurity is selected and the number of features consistent with the cluster label are calculated for both training and calibration testing data. Finally, the training model with the maximum number of consistent features is selected. Experiments conducted on motor imagery of swallow EEG data achieved an average accuracy of 74.29% and 72.64% with model adaptation for Laplacian derivates of power features and wavelet features, respectively. Further, an average accuracy increase of 2.9% is achieved with model adaptation using wavelet features, in comparison with that achieved without model adaptation, which is significant at 5% significance level as demonstrated in the statistical test.


Assuntos
Deglutição , Eletroencefalografia , Imagens, Psicoterapia , Processamento de Sinais Assistido por Computador , Adaptação Fisiológica , Encéfalo , Interfaces Cérebro-Computador , Calibragem , Eletrodos , Voluntários Saudáveis , Humanos , Reprodutibilidade dos Testes , Interface Usuário-Computador
11.
Neurorehabil Neural Repair ; 27(1): 53-62, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22645108

RESUMO

BACKGROUND: Robot-assisted training may improve motor function in some hemiparetic patients after stroke, but no physiological predictor of rehabilitation progress is reliable. Resting state functional magnetic resonance imaging (RS-fMRI) may serve as a method to assess and predict changes in the motor network. OBJECTIVE: The authors examined the effects of upper-extremity robot-assisted rehabilitation (MANUS) versus an electroencephalography-based brain computer interface setup with motor imagery (MI EEG-BCI) and compared pretreatment and posttreatment RS-fMRI. METHODS: In all, 9 adults with upper-extremity paresis were trained for 4 weeks with a MANUS shoulder-elbow robotic rehabilitation paradigm. In 3 participants, robot-assisted movement began if no voluntary movement was initiated within 2 s. In 6 participants, MI-BCI-based movement was initiated if motor imagery was detected. RS-fMRI and Fugl-Meyer (FM) upper-extremity motor score were assessed before and after training. RESULTS: . The individual gain in FM scores over 12 weeks could be predicted from functional connectivity changes (FCCs) based on the pre-post differences in RS-fMRI measurements. Both the FM gain and FCC were numerically higher in the MI-BCI group. Increases in FC of the supplementary motor area, the contralesional and ipsilesional motor cortex, and parts of the visuospatial system with mostly association cortex regions and the cerebellum correlated with individual upper-extremity function improvement. CONCLUSION: FCC may predict the steepness of individual motor gains. Future training could therefore focus on directly inducing these beneficial increases in FC. Evaluation of the treatment groups suggests that MI is a potential facilitator of such neuroplasticity.


Assuntos
Interfaces Cérebro-Computador , Imagens, Psicoterapia/métodos , Recuperação de Função Fisiológica/fisiologia , Descanso , Robótica/métodos , Reabilitação do Acidente Vascular Cerebral , Extremidade Superior/fisiopatologia , Adulto , Encéfalo/irrigação sanguínea , Encéfalo/fisiopatologia , Mapeamento Encefálico , Eletroencefalografia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Modelos Lineares , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Oxigênio , Análise de Componente Principal , Acidente Vascular Cerebral/patologia , Tomografia Computadorizada por Raios X , Adulto Jovem
12.
Artigo em Inglês | MEDLINE | ID: mdl-21096475

RESUMO

This clinical study investigates the ability of hemiparetic stroke patients in operating EEG-based motor imagery brain-computer interface (MI-BCI). It also assesses the efficacy in motor improvements on the stroke-affected upper limb using EEG-based MI-BCI with robotic feedback neurorehabilitation compared to robotic rehabilitation that delivers movement therapy. 54 hemiparetic stroke patients with mean age of 51.8 and baseline Fugl-Meyer Assessment (FMA) 14.9 (out of 66, higher = better) were recruited. Results showed that 48 subjects (89%) operated EEG-based MI-BCI better than at chance level, and their ability to operate EEG-based MI-BCI is not correlated to their baseline FMA (r=0.358). Those subjects who gave consent are randomly assigned to each group (N=11 and 14) for 12 1-hour rehabilitation sessions for 4 weeks. Significant gains in FMA scores were observed in both groups at post-rehabilitation (4.5, 6.2; p=0.032, 0.003) and 2-month post-rehabilitation (5.3, 7.3; p=0.020, 0.013), but no significant differences were observed between groups (p=0.512, 0.550). Hence, this study showed evidences that a majority of hemiparetic stroke patients can operate EEG-based MI-BCI, and that EEG-based MI-BCI with robotic feedback neurorehabilitation is effective in restoring upper extremities motor function in stroke.


Assuntos
Eletroencefalografia/métodos , Retroalimentação Sensorial/fisiologia , Imagens, Psicoterapia/métodos , Atividade Motora/fisiologia , Robótica/métodos , Reabilitação do Acidente Vascular Cerebral , Interface Usuário-Computador , Adulto , Idoso , Encéfalo/fisiopatologia , Calibragem , Demografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Acidente Vascular Cerebral/fisiopatologia , Adulto Jovem
13.
Artigo em Inglês | MEDLINE | ID: mdl-19965253

RESUMO

Non-invasive EEG-based motor imagery brain-computer interface (MI-BCI) holds promise to effectively restore motor control to stroke survivors. This clinical study investigates the effects of MI-BCI for upper limb robotic rehabilitation compared to standard robotic rehabilitation. The subjects are hemiparetic stroke patients with mean age of 50.2 and baseline Fugl-Meyer (FM) score 29.7 (out of 66, higher = better) randomly assigned to each group respectively (N = 8 and 10). Each subject underwent 12 sessions of 1-hour rehabilitation for 4 weeks. Significant gains in FM scores were observed in both groups at post-rehabilitation (4.9, p = 0.001) and 2-month post-rehabilitation (4.9, p = 0.002). The experimental group yielded higher 2-month post-rehabilitation gain than the control (6.0 versus 4.0) but no significance was found (p = 0.475). However, among subjects with positive gain (N = 6 and 7), the initial difference of 2.8 between the two groups was increased to a significant 6.5 (p = 0.019) after adjustment for age and gender. Hence this study provides evidence that BCI-driven robotic rehabilitation is effective in restoring motor control for stroke.


Assuntos
Eletroencefalografia/instrumentação , Imaginação , Córtex Motor/fisiopatologia , Movimento , Paresia/reabilitação , Robótica/métodos , Interface Usuário-Computador , Braço , Biorretroalimentação Psicológica/instrumentação , Potencial Evocado Motor , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Terapia Assistida por Computador/métodos , Resultado do Tratamento
14.
Artigo em Inglês | MEDLINE | ID: mdl-19163632

RESUMO

This clinical study investigates whether the spatial patterns of hemiparetic stroke patients operating a non-invasive Motor Imagery-based Brain Computer Interface (MI-BCI) is comparable to healthy subjects. The spatial patterns for a specific frequency range are generated using the common spatial pattern (CSP) algorithm, of which is highly successful for discriminating two classes of EEG measurements in MI-BCI. The spatial patterns illustrate how the presumed sources project on the scalp and are effective in verifying the neurophysiological plausibility of the computed solution. The spatial patterns show focused activity in ipsilateral as well as contralateral hemisphere with respect to the hand by tapping or motor imagery in 2 BCI-artful healthy subjects and 12 BCI-naïve hemiparetic stroke patients. The results also show that neurophysiologically interpretable spatial patterns is more common in performing motor imagery compared to finger tapping by hemiparetic stroke patients. Hence, this shows that hemiparetic stroke patients are capable of operating MI-BCI.


Assuntos
Encéfalo/patologia , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral/fisiopatologia , Algoritmos , Computadores , Eletrodos , Eletroencefalografia/métodos , Humanos , Processamento de Imagem Assistida por Computador , Imagens, Psicoterapia , Destreza Motora , Neurônios/patologia , Neurofisiologia/métodos , Software , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA