RESUMO
The introduction of adeno-associated virus-mediated, liver-directed gene therapy into the hemophilia treatment landscape brings not only great promise but also considerable uncertainty to a community that has a history punctuated by the devastating effects of HIV and hepatitis C virus. These infections were introduced into people with hemophilia through the innovation of factor concentrates in the 1970s and 1980s. Concentrates, heralded as a major advance in treatment at the time, brought devastation and death to the community already challenged by the complications of bleeding into joints, vital organs, and the brain. Over the past 5 decades, considerable advances in hemophilia treatment have improved the survival, quality of life, and participation of people with hemophilia, although challenges remain and health equity with their unaffected peers has not yet been achieved. The decision to take a gene therapy product is one in which an informed, holistic, and shared decision-making approach must be employed. Bias on the part of health care professionals and people with hemophilia must be addressed and minimized. Here, we review data leading to the regulatory authorization of valoctocogene roxaparvovec, an adeno-associated virus 5 gene therapy, in Europe to treat hemophilia A and etranacogene dezaparvovec-drlb in the United States and Europe to treat hemophilia B. We also provide an overview of the decision-making process and recommend steps that should be taken by the hemophilia community to ensure the safety of and optimal outcomes for people with hemophilia who choose to receive a gene therapy product.
Assuntos
Hemofilia A , Hemofilia B , Humanos , Hemofilia A/genética , Hemofilia A/terapia , Qualidade de Vida , Hemofilia B/genética , Hemofilia B/terapia , Terapia Genética/efeitos adversosRESUMO
Recombinant FVIII formulated in PEG-ylated liposomes (rFVIII-PEG-Lip) was reported to increase the bleed-free days from 7 to 13 days (at 35 IU/kg rFVIII) in severe hemophilia A patients. To understand the underlying mechanism, we sought to recapitulate its efficacy in hemophilia A mice. Animals treated with rFVIII-PEG-Lip achieved approximately 30% higher survival relative to rFVIII after tail vein transection inflicted 24 hours after dosing. The efficacy of rFVIII-PEG-Lip represents an approximately 2.5-fold higher "apparent" FVIII activity, which is not accounted for by its modestly increased (13%) half-life. The enhanced efficacy requires complex formation between rFVIII and PEG-Lip before the administration. Furthermore, PEG-Lip associates with the majority of platelets and monocytes in vivo, and results in increased P-selectin surface expression on platelets in response to collagen. Rotational thromboelastometry (ROTEM) analysis of whole blood from rFVIII-PEG-Lip-treated animals at 5 minutes up to 72 hours after dosing recapitulated the 2- to 3-fold higher apparent FVIII activity. The enhanced procoagulant activity is fully retained in plasma unless microparticles are removed by ultracentrifugation. Taken together, the efficacy of rFVIII-PEG-Lip is mediated mainly by its sensitization of platelets and the generation of procoagulant microparticles that may express sustained high-affinity receptors for FVIII.