RESUMO
A polymeric adsorbent for extraction of the antimalarial drug artemisinin from Artemisia annua L. was computationally designed. This polymer demonstrated a high capacity for artemisinin (120 mg g(-1) ), quantitative recovery (87%) and was found to be an effective material for purification of artemisinin from complex plant matrix. The artemisinin quantification was conducted using an optimised HPLC-MS protocol, which was characterised by high precision and linearity in the concentration range between 0.05 and 2 µg mL(-1) . Optimisation of the purification protocol also involved screening of commercial adsorbents for the removal of waxes and other interfering natural compounds, which inhibit the crystallisation of artemisinin. As a result of a two step-purification protocol crystals of artemisinin were obtained, and artemisinin purity was evaluated as 75%. By performing the second stage of purification twice, the purity of artemisinin can be further improved to 99%. The developed protocol produced high-purity artemisinin using only a few purification steps that makes it suitable for large scale industrial manufacturing process.
Assuntos
Artemisia annua/química , Artemisininas/isolamento & purificação , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Extratos Vegetais/isolamento & purificação , Polímeros/química , Absorção , Artemisininas/química , Cromatografia Líquida de Alta Pressão/instrumentação , Espectrometria de Massas/instrumentação , Impressão Molecular , Extratos Vegetais/química , Polímeros/síntese químicaRESUMO
A molecularly imprinted polymer (MIP) for the purification of N(1),N(12)-bis(dihydrocaffeoyl)spermine (kukoamine A) was computationally designed and tested. The properties of the polymer were characterized. The protocol of the solid phase extraction (SPE) of kukoamine A from potato peels was optimized. A HPLC-MS method for the quantification of kukoamine A was developed and used for all optimization studies. The capacity of the MIP in relation to kukoamine A from the potato peels extract was estimated at 54 mg/g of the polymer. The kukoamine A purified from potato extract using MIP was exceptionally pure (≈ 90%). Although the corresponding blank polymer was less selective than the MIP for the extraction of kukoamine A from the potato extract, it was shown that the blank polymer could be effectively used for the purification of the crude synthetic kukoamine (polymer capacity = 80 mg of kukoamine A/g of the adsorbent, kukoamine A purity ≈ 86%). Therefore, selective adsorbents could be computationally designed for other plant products, allowing their purification in quantities that would be sufficient for more detailed studies and potential practical applications.
Assuntos
Extratos Vegetais/isolamento & purificação , Polímeros/química , Solanum tuberosum/química , Extração em Fase Sólida/métodos , Espermina/análogos & derivados , Impressão Molecular , Extratos Vegetais/química , Polímeros/síntese química , Extração em Fase Sólida/instrumentação , Espermina/química , Espermina/isolamento & purificaçãoRESUMO
Identification and quantification of the opiates morphine and thebaine has been achieved in three commercial poppy cultivars using FTIR-ATR spectroscopy, from a simple and rapid methanolic extraction, suitable for field analysis. The limits of detection were 0.13 mg/ml (0.013%, w/v) and 0.3 mg/ml (0.03%, w/v) respectively. The concentrations of opiates present were verified with HPLC-MS. The chemometrics has been used to identify specific "signature" peaks in the poppy IR spectra for characterisation of cultivar by its unique fingerprint offering a potential forensic application in opiate crop analysis.