Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 13(5): e0197213, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29771932

RESUMO

Drug-induced liver injury (DILI) is a leading cause of acute liver failure and transplantation. DILI can be the result of impaired hepatobiliary transporters, with altered bile formation, flow, and subsequent cholestasis. We used gadoxetate dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), combined with pharmacokinetic modelling, to measure hepatobiliary transporter function in vivo in rats. The sensitivity and robustness of the method was tested by evaluating the effect of a clinical dose of the antibiotic rifampicin in four different preclinical imaging centers. The mean gadoxetate uptake rate constant for the vehicle groups at all centers was 39.3 +/- 3.4 s-1 (n = 23) and 11.7 +/- 1.3 s-1 (n = 20) for the rifampicin groups. The mean gadoxetate efflux rate constant for the vehicle groups was 1.53 +/- 0.08 s-1 (n = 23) and for the rifampicin treated groups was 0.94 +/- 0.08 s-1 (n = 20). Both the uptake and excretion transporters of gadoxetate were statistically significantly inhibited by the clinical dose of rifampicin at all centers and the size of this treatment group effect was consistent across the centers. Gadoxetate is a clinically approved MRI contrast agent, so this method is readily transferable to the clinic. CONCLUSION: Rate constants of gadoxetate uptake and excretion are sensitive and robust biomarkers to detect early changes in hepatobiliary transporter function in vivo in rats prior to established biomarkers of liver toxicity.


Assuntos
Meios de Contraste , Gadolínio DTPA , Fígado , Imageamento por Ressonância Magnética , Animais , Transporte Biológico Ativo/efeitos dos fármacos , Biomarcadores/metabolismo , Meios de Contraste/farmacocinética , Meios de Contraste/farmacologia , Avaliação Pré-Clínica de Medicamentos , Gadolínio DTPA/farmacocinética , Gadolínio DTPA/farmacologia , Fígado/diagnóstico por imagem , Fígado/metabolismo , Masculino , Ratos , Ratos Wistar
2.
Artigo em Inglês | MEDLINE | ID: mdl-27622857

RESUMO

Cardiovascular toxicity is a prominent reason for failures in drug development, resulting in the demand for assays that can predict this liability in early drug discovery. We investigated whether iCell® cardiomyocytes have utility as an early QT/TdP screen. Thirty clinical drugs with known QT/TdP outcomes were evaluated blind using label-free microelectrode array (parameters measured were beating period (BP), field potential duration (FPD), fast Na+ amplitude and slope) and live cell, fast kinetic fluorescent Ca2+ transient FLIPR® Tetra (parameters measured were peak count, width, amplitude) systems. Many FPD-altering drugs also altered BP. Correction for BP, using a Log-Log (LL) model, was required to appropriately interpret direct drug effects on FPD. In comparison with human QT effects and when drug activity was to be predicted at top test concentration (TTC), LL-corrected FPD and peak count had poor assay sensitivity and specificity values: 13%/64% and 65%/11%, respectively. If effective free therapeutic plasma concentration (EFTPC) was used instead of TTC, the values were 0%/100% and 6%/100%, respectively. When compared to LL-corrected FPD and peak count, predictive values of uncorrected FPD, BP, width and amplitude were not much different. If pro-arrhythmic risk was to be predicted using Ca2+ transient data, the values were 67%/100% and 78%/53% at EFTPC and TTC, respectively. Thus, iCell® cardiomyocytes have limited value as an integrated QT/TdP assay, highlighting the urgent need for improved experimental alternatives that may offer an accurate integrated cardiomyocyte safety model for supporting the development of new drugs without QT/TdP effects.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Canais de Cálcio/metabolismo , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Síndrome do QT Longo/induzido quimicamente , Miócitos Cardíacos/efeitos dos fármacos , Cardiotoxicidade , Técnicas de Cultura de Células , Células Cultivadas , Meios de Cultura/química , Avaliação Pré-Clínica de Medicamentos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Síndrome do QT Longo/metabolismo , Síndrome do QT Longo/fisiopatologia , Microeletrodos , Miócitos Cardíacos/metabolismo , Preparações Farmacêuticas/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA