RESUMO
Hemodialysis has a detrimental effect on fat-free mass (FFM) and muscle strength over time. Thus, we aimed to evaluate the effect of creatine supplementation on the body composition and Malnutrition-Inflammation Score (MIS) in patients with chronic kidney disease (CKD) undergoing hemodialysis. An exploratory 1-year balanced, placebo-controlled, and double-blind design was conducted with hemodialysis patients (≥18 years). The creatine group (CG) received 5 g of creatine monohydrate and 5 g of maltodextrin per day and the placebo group (PG) received 10 g of maltodextrin per day. MIS and body composition were analyzed at three time points: pre, intermediate (after 6 months), and post (after 12 months). After 6 months, 60% of patients on creatine experienced an increase in FFM compared to a 36.8% increase for those on placebo. Moreover, 65% of patients on creatine increased their skeletal muscle mass index (SMMI) compared to only 15.8% for those on placebo. Creatine increased intracellular water (ICW) in 60% of patients. MIS did not change after the intervention. In the CG, there was an increase in body weight (p = 0.018), FFM (p = 0.010), SMMI (p = 0.022). CG also increased total body water (pre 35.4 L, post 36.1 L; p = 0.008), mainly due to ICW (pre 20.2 L, intermediate 20.7 L, post 21.0 L; p = 0.016). Long-term creatine supplementation in hemodialysis patients did not attenuate the MIS, but enhanced FFM and SMMI, which was likely triggered by an increase in ICW.
Assuntos
Creatina , Desnutrição , Humanos , Composição Corporal , Suplementos Nutricionais , Método Duplo-Cego , Inflamação/metabolismo , Desnutrição/metabolismo , Músculo Esquelético/metabolismo , Água/metabolismo , Adolescente , AdultoRESUMO
PURPOSE OF REVIEW: Cancer patients may have a variety of disorders associated with systemic inflammation caused by disease progression. Consequently, we have protein hypercatabolism. In view of this, protein and amino acid adequacy should be considered in relation to nutritional behavior. Therefore, this review aims to evaluate the influence of protein and amino acids in the nutritional therapy of cancer. RECENT FINDINGS: Diets with adequate protein levels appear to be beneficial in the treatment of cancer; guidelines suggest consumption of greater than 1.0-1.5âg/kg body weight/day. In patients diagnosed with malnutrition, sarcopenia, or cachexia, it is recommended to use the maximum amount of protein (1.5âg/kg of weight/day) to adapt the diet. In addition, based on the evidence found, there is no consensus on the dose and effects in cancer patients of amino acids such as branched-chain amino acids, glutamine, arginine, and creatine. SUMMARY: When evaluating the components of the diet of cancer patients, the protein recommendation should be greater than 1.0-1.5âg/kg of weight/day, with a distribution between animal and vegetable proteins. We found little evidence demonstrating clinical benefits regarding individual or combined amino acid supplementation. Still, it is unclear how the use, dose, and specificity for different types of cancer should be prescribed or at what stage of treatment amino acids should be prescribed.
Assuntos
Aminoácidos , Neoplasias , Humanos , Aminoácidos/uso terapêutico , Aminoácidos de Cadeia Ramificada/uso terapêutico , Aminoácidos de Cadeia Ramificada/metabolismo , Caquexia/metabolismo , Caquexia/terapia , Dieta , Desnutrição/complicações , Neoplasias/terapia , ProteínasRESUMO
AIMS: The aim of this review was to analyze the evidence of whey protein supplementation on body weight, fat mass, lean mass and glycemic parameters in subjects with overweight or type 2 diabetes mellitus (T2DM) undergoing calorie restriction or with ad libitum intake. DATA SYNTHESIS: Overweight and obesity are considered risk factors for the development of chronic noncommunicable diseases such as T2DM. Calorie restriction is a dietary therapy that reduces weight and fat mass, promotes the improvement of glycemic parameters, and decreases muscle mass. The maintenance of muscle mass during weight loss is necessary in view of its implication in preventing chronic diseases and improving functional capacity and quality of life. The effects of increased protein consumption on attenuating muscle loss and reducing body fat during calorie restriction or ad libitum intake in overweight individuals are discussed. Some studies have demonstrated the positive effects of whey protein supplementation on improving satiety and postprandial glycemic control in short term; however, it remains unclear whether long-term whey protein supplementation can positively affect glycemic parameters. CONCLUSIONS: Although whey protein is considered to have a high nutritional quality, its effects in the treatment of overweight, obese individuals and those with T2DM undergoing calorie restriction or ad libitum intake are still inconclusive.
Assuntos
Diabetes Mellitus Tipo 2 , Sobrepeso , Humanos , Proteínas do Soro do Leite/efeitos adversos , Sobrepeso/diagnóstico , Adiposidade , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/prevenção & controle , Qualidade de Vida , Índice de Massa Corporal , Obesidade , Suplementos Nutricionais/efeitos adversos , Peso CorporalRESUMO
An excess of body fat is one of the biggest public health concerns in the world, due to its relationship with the emergence of other health problems. Evidence suggests that supplementation with long-chain polyunsaturated fatty acids (omega-3) promotes increased lipolysis and the reduction of body mass. Likewise, this clinical trial aimed to evaluate the effects of supplementation with krill oil on waist circumference and sagittal abdominal diameter in overweight women. This pilot, balanced, double-blind, and placebo-controlled study was carried out with 26 women between 20 and 59 years old, with a body mass index >25 kg/m2. The participants were divided into the control (CG) (n = 15, 3 g/daily of mineral oil) and krill oil (GK) (n = 16, 3 g/daily of krill oil) groups, and received the supplementation for eight weeks. Food intake variables were obtained using a 24 h food recall. Anthropometric measurements (body mass, body mass index, waist circumference, and sagittal abdominal diameter) and handgrip strength were obtained. After the intervention, no changes were found for the anthropometric and handgrip strength variables (p > 0.05). Regarding food intake, differences were found for carbohydrate (p = 0.040) and polyunsaturated (p = 0.006) fatty acids, with a reduction in the control group and an increase in krill oil. In conclusion, supplementation with krill oil did not reduce the waist circumference and sagittal abdominal diameter. Therefore, more long-term studies with a larger sample size are necessary to evaluate the possible benefits of krill oil supplementation in overweight women.
Assuntos
Euphausiacea , Ácidos Graxos Ômega-3 , Animais , Humanos , Feminino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Sobrepeso/tratamento farmacológico , Circunferência da Cintura , Diâmetro Abdominal Sagital , Força da Mão , Óleo Mineral , Suplementos Nutricionais , Método Duplo-Cego , CarboidratosRESUMO
Caffeine is one of the most widely used substances as recreational drug for performance-enhancement in sport, underpinned by a strong evidence base. Although the effects of caffeine are widely investigated within the scope of performance physiology, the molecular effects of caffeine within skeletal muscle remain unclear. Evidence from in vitro and in vivo models suggest that caffeine regulates the glucose metabolism in the skeletal muscle. Moreover, caffeine seems to stimulate CaMKII, PPARδ/ß, AMPK and PGC1α, classical markers of exercise-adaptations, including mitochondrial biogenesis and mitochondrial content. This review summarizes evidence to suggest caffeine-effects within skeletal muscle fibers, focusing on the putative role of caffeine on mitochondrial biogenesis to explore whether caffeine supplementation might be a strategy to enhance mitochondrial biogenesis.
Assuntos
Drogas Ilícitas , PPAR delta , Proteínas Quinases Ativadas por AMP/metabolismo , Cafeína/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/farmacologia , Glucose/metabolismo , Humanos , Drogas Ilícitas/metabolismo , Drogas Ilícitas/farmacologia , Músculo Esquelético/metabolismo , Biogênese de Organelas , PPAR delta/metabolismo , PPAR delta/farmacologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/farmacologiaRESUMO
Polyphenol supplementation may be useful during exercise. However, there is no evidence indicating yerba mate (YM) increases muscle strength. Thus, this study sought to evaluate the effect of acute YM supplementation on muscle strength following the strength test. In a crossover and pilot clinical trial, ten men were divided into two groups, receiving either supplementation with YM or a placebo. One hour after consumption of beverages, the participants were submitted to tests of one-repetition maximum (1 RM) on the bench press and leg press. The average age of the participants was 25.5 ± 4.1 years, and the average body mass index was 24.4 ± 2.9 kg/m². YM was not able to increase muscle strength when compared to the placebo in either the 1RM leg press exercise (YM: 225 ± 56.2 kg, vs. placebo: 223 ± 64.3 kg, p = 0.743, Cohen's d = 0.03) or in the 1 RM bench press exercise (YM: 59.5 ± 20.7 kg vs. placebo: 59.5 ± 21.5 kg, p = 1.000, Cohen's d = 0.) In conclusion, acute intake of YM did not change muscle strength in physically active men.
Assuntos
Ilex paraguariensis , Treinamento Resistido , Adulto , Estudos Cross-Over , Suplementos Nutricionais , Método Duplo-Cego , Humanos , Masculino , Força Muscular , Músculo Esquelético , Músculos , Projetos Piloto , Extratos Vegetais/farmacologia , Adulto JovemRESUMO
Protein quality has an important role in increasing satiety. Evidence suggests that whey protein (WP) provides satiety via gastrointestinal hormone secretion. Hydrolysed collagen supplementation can also stimulate the production of incretins and influence satiety and food intake. Thus, we sought to compare the effect of acute supplementation of WP or hydrolysed collagen on post-intervention appetite and energy consumption. This was a randomised, double-blind, crossover pilot study with ten healthy adult women (22·4 years/old) who were submitted to acute intake (single dose) of a beverage containing WP (40 g of concentrated WP) or hydrolysed collagen (40 g). Subjective appetite ratings (feelings of hunger, desire to eat and full stomach) were measured using the Visual Analog Scale (VAS), energy intake was quantified by ad libitum cheese bread consumption 2 hours after supplementation and blood was collected for leptin and glucose determination. There was no difference between treatment groups in the perception of hunger (P = 0·983), desire to eat (P = 0·326), full stomach feeling (P = 0·567) or food consumption (P = 0·168). Leptin concentrations at 60 min post supplementation were higher when subjects received hydrolysed collagen (P = 0·006). Acute supplementation with hydrolysed collagen increased leptin levels in comparison with WP, but had no effect on appetite measured by feelings of hunger, desire to eat, full stomach feeling (VAS) or energy consumption.
Assuntos
Apetite , Leptina , Adulto , Humanos , Feminino , Proteínas do Soro do Leite/farmacologia , Leptina/farmacologia , Projetos Piloto , Saciação , Ingestão de Energia , Suplementos Nutricionais , Colágeno/farmacologia , Estudos Cross-OverRESUMO
Neuromuscular electrical stimulation (NMES) elicits muscle contraction and has been shown to improvement of quality of life. However, if NMES improvement the quality of life and attenuate the inflammation is not fully understood. Therefore, our aim sought to assess the effects of short-term of intradialytic NMES on inflammation and quality of life in patients with chronic kidney disease patients undergoing hemodialysis. A randomized clinical trial conducted with parallel design enrolled adult hemodialysis patients three times a week during 1 month. Patients were randomly assigned to two groups (control group, n = 11; 4F/7 M) or (NMES group, n = 10; 4F/6 M). Pre-and post-intervention, was measured the high-sensitivity C reactive protein, interleukin-6, interleukin-10, and TNFα by the ELISA, and quality of life was applied using the SF-36. During each hemodialysis session, NMES was applied bilaterally at thigh and calves for 40 min. There was not change in cytokines (hs-CRP, IL-6, IL-10, and TNFα) concentrations time × group interaction. In addition, no difference was found in eight domains of quality of life. In addition, the groups did not differ for muscle strength and muscle mass. In conclusion, we found that intradialytic NMES did not change inflammation neither quality of life.
Assuntos
Terapia por Estimulação Elétrica , Estimulação Elétrica/métodos , Inflamação/epidemiologia , Inflamação/terapia , Qualidade de Vida , Adulto , Biomarcadores , Terapia por Estimulação Elétrica/métodos , Feminino , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Contração Muscular , Força Muscular , Falha de Tratamento , Resultado do TratamentoRESUMO
Gastrointestinal symptoms are common in patients in hemodialysis treatment and were frequently associated with low intake of dietary fibers and liquids, oral iron supplementation, phosphate binders, and low level of physical activity. Thus, the aim of this study was to evaluate the effect of baru almond oil in comparison with mineral oil supplementation on bowel habits of hemodialysis patients. Thirty-five patients on hemodialysis (57% men, 49.9 ± 12.4 years) were enrolled in a 12-week single-blind clinical trial. Patients were allocated (1 : 2) by sex and age into (1) the mineral group: 10 capsules per day of mineral oil (500 mg each) or (2) the baru almond oil group: 10 capsules per day of baru almond oil (500 mg each). Bowel habits were assessed by the Rome IV criteria, Bristol scale, and self-perception of constipation. Food consumption, physical activity level, and time spent sitting were also evaluated at the baseline and at the end of the study. After 12 weeks of supplementation, the baru almond oil group showed reduced Rome IV score (6.1 ± 5.5 vs 2.8 ± 4.3, p=0.04) and the straining on the evacuation score (1.2 ± 1.4 vs 0.4 ± 0.7; p=0.04), while the mineral group did not show any change in the parameters. The frequency of self-perception of constipation was lower in the baru almond oil group after intervention (45.0% vs 15.0%, p=0.04). Baru almond oil improved bowel habit and the straining on evacuation in hemodialysis patients.
RESUMO
BACKGROUND: Ursolic acid (UA) is thought to have an anabolic effect on muscle mass in humans. This study sought to compare the effects of UA and a placebo on muscle strength and mass in young men undergoing resistance training (RT) and consuming a high-protein diet. METHODS: A clinical, double-blind, placebo-controlled trial was conducted for 8 weeks. The Control + RT group (CON n = 12) received 400 mg/d of placebo, and the UA + RT group (UA n = 10) received 400 mg/d of UA. Both groups ingested ~1.6 g/kg of protein and performed the same RT program. Pre- and post-intervention, both groups were evaluated for anthropometric measures, body composition, food intake and muscle strength. RESULTS: Food intake remained unchanged throughout the study. Both groups showed significant increases in body weight (CON Δ: 2.12 ± 0.47 kg, p = 0.001 vs. UA Δ: 2.24 ± 0.67 kg, p = 0.009), body mass index (BMI) (CON Δ: 0.69 ± 0.15 kg/m2, p = 0.001 vs. UA Δ: 0.75 ± 0.23, p = 0.011) and thigh circumference (CON Δ: 1.50 ± 0.36, p = 0.002 vs. UA Δ: 2.46 ± 0.50 cm, p = 0.003 vs. UA 1.84 ± 0.82 cm, p = 0.001), with differences between them. There was no difference in the arm, waist and hip circumferences. Both groups showed increases in muscle mass (CON Δ: 1.12 ± 0.26, p = 0.001 vs. UA Δ: 1.08 ± 0.28 kg, p = 0.004), but there was no significant difference between them. Additionally, there were significant increases in the one repetition maximum test in the bench press and in the 10-repetition maximum test in the knee extension (CON Δ: 5.00 ± 2.09, p = 0.036 vs. UA Δ: 7.8 ± 1.87, p = 0.340 and CON Δ: 3.58 ± 1.15, p = 0.010 vs. UA Δ: 1.20 ± 0.72, p = 0.133), respectively, with no difference between them. CONCLUSIONS: Ursolic acid had no synergic effect on muscle strength and mass in response to RT in physically active men consuming a high-protein diet. BRAZILIAN CLINICAL TRIALS REGISTRY (REBEC): RBR-76tbqs.
Assuntos
Suplementos Nutricionais , Força Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Treinamento Resistido , Triterpenos/administração & dosagem , Adolescente , Adulto , Antropometria , Composição Corporal , Dieta Rica em Proteínas , Método Duplo-Cego , Ingestão de Alimentos , Voluntários Saudáveis , Humanos , Masculino , Adulto Jovem , Ácido UrsólicoRESUMO
A high-fat fast-food meal negatively impacts postprandial metabolism even in healthy young people. In experimental studies, epigallocatechin-3-gallate (EGCG), a bioactive compound present in green tea, has been described as a potent natural inhibitor of fatty acid synthase. Thus, we sought to evaluate the effects of acute EGCG supplementation on postprandial lipid profile, glucose, and insulin levels following a high-fat fast-food meal. Fourteen healthy young women 21 ± 1 years and body mass index 21.4 ± 0.41 kg/m2 were enrolled in a randomized, double-blind, placebo-controlled crossover study. Participants ingested capsules containing 800 mg EGCG or placebo immediately before a typical fast-food meal rich in saturated fatty acids. Blood samples were collected at baseline and then at 90 and 120 min after the meal. The EGCG treatment attenuated postprandial triglycerides (p = 0.029) and decreased high-density lipoprotein cholesterol (HDL-c) (p = 0.016) at 120 min. No treatment × time interaction was found for total cholesterol, low-density lipoprotein (LDL-c), and glucose or insulin levels. The incremental area under the curve (iAUC) for glucose was decreased by EGCG treatment (p < 0.05). No difference was observed in the iAUC for triglycerides and HDL-c. In healthy young women, acute EGCG supplementation attenuated postprandial triglycerides and glucose but negatively impacted HDL-c following a fast-food meal.
Assuntos
Catequina/análogos & derivados , Suplementos Nutricionais , Fast Foods/efeitos adversos , Voluntários Saudáveis , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipoproteínas HDL/metabolismo , Refeições/fisiologia , Período Pós-Prandial/fisiologia , Triglicerídeos/metabolismo , Adulto , Glicemia/metabolismo , Catequina/administração & dosagem , Catequina/farmacologia , Estudos Cross-Over , Método Duplo-Cego , Fast Foods/análise , Ácido Graxo Sintases/antagonistas & inibidores , Ácidos Graxos/análise , Feminino , Humanos , Insulina/metabolismo , Adulto JovemRESUMO
Cancer patients display systemic inflammation, which leads to an increase in protein catabolism, thus promoting the release of free amino acids to further support metabolism and remodelling of muscle proteins. Inflammation associated with tumor growth leads to malnutrition, a factor that increases the risk of developing cachexia. With cancer-induced cachexia, nutritional interventions have gained traction as a preventative method to manage this condition. Currently, cancer consensus recommendations suggest a protein intake above 1.0 g/kg.day-1 up to 2.0 g/k.day-1 for cancer patients, although an ideal amount for some amino acids in isolation has yet to be determined. Due to controversy in the literature regarding the benefits of the biochemical mechanisms of various muscle mass supplements, such as L-leucine (including whey protein and BCAA), ß-hydroxy-beta-methyl butyrate (HMß), arginine, glutamine and creatine, several studies have carefully examined their effects. L-leucine and its derivatives appear to regulate protein synthesis by direct or indirect activation of the mTORC1 pool of kinases, further promoting muscle protein balance. Arginine and glutamine may act by reducing inflammation and infection progression, thus promoting improvements in food intake. Creatine exerts anabolic activity, acting as an immediate energy substrate to support muscle contraction further increasing lean mass, mainly due to greater water uptake by the muscle. In this narrative review, we highlighted the main findings regarding protein consumption and amino acids to mitigate cancer-induced skeletal muscle depletion.
Assuntos
Aminoácidos/administração & dosagem , Caquexia/tratamento farmacológico , Suplementos Nutricionais , Músculo Esquelético/patologia , Neoplasias/complicações , Dieta , Humanos , Neoplasias/tratamento farmacológicoRESUMO
Protein supplements are usually used to control body weight, however, the impact of protein quality on body fat attenuation is unknown. We investigated the effects of isocaloric isoproteic supplementation of either whey protein (WG) or hydrolysed collagen supplementation (CG) on dietary intake, adiposity and biochemical markers in overweight women. METHODS: In this randomized double-blind study, 37 women, [mean ± SE, age 40.6 ± 1.7 year; BMI (kg/m2) 30.9 ± 0.6], consumed sachets containing 40 g/day of concentrated whey protein (25 g total protein, 2.4 leucine, 1.0 valine, 1.5 isoleucine, n = 17) or 38 g/day of hydrolysed collagen (26 g total protein, 1.02 leucine, 0.91 valine, 0.53 isoleucine, n = 20) in the afternoon snack. The compliance was set at >70% of the total theoretical doses. The dietary intake was evaluated by a 6-day food record questionnaire. At the beginning and after eight weeks of follow-up, body composition was evaluated by using dual-energy X-ray absorptiometry and lipid profile, insulin resistance, C-reactive protein, adiponectin, leptin and nesfastin plasma concentrations were analyzed. RESULTS: Supplements were isocaloric and isoproteic. There were no differences in caloric intake (p = 0.103), protein (p = 0.085), carbohydrate (p = 0.797) and lipids (p = 0.109) intakes. The branched chain amino acids (BCAA) (GC: 1.8 ± 0.1 g vs. WG: 5.5 ± 0.3 g, p < 0.001) and leucine intake (CG: 0.1 ± 0.1 g vs. WG: 2.6 ± 0.1 g, p < 0.001) were higher in WG compared to CG. BMI increased in the CG (0.2 ± 1.1 kg/m2, p = 0.044) but did not change in WG. WG decreased the android fat (-0.1 ± 0.3 kg, p = 0.031) and increased nesfatin concentrations (4.9 ± 3.2 ng/mL, p = 0.014) compared to CG. CONCLUSIONS: Whey protein supplementation in overweight women increased nesfatin concentrations and could promote increase of resting metabolic rate as part of body composition improvement programs compared to collagen supplementation for 8 weeks. Additionally, our findings suggest that collagen may not be an effective supplement for overweight women who are attempting to alter body composition.
Assuntos
Tecido Adiposo/efeitos dos fármacos , Colágeno/administração & dosagem , Suplementos Nutricionais , Ingestão de Alimentos/efeitos dos fármacos , Sobrepeso , Proteínas do Soro do Leite/administração & dosagem , Adulto , Composição Corporal , Método Duplo-Cego , Feminino , Humanos , Pessoa de Meia-Idade , Adulto JovemRESUMO
Cancer remains a public health challenge in the identification and development of ideal pharmacological therapies and dietary strategies. The use of whey protein as a dietary strategy is widespread in the field of oncology. The two types of whey protein, sweet or acid, result from several processing techniques and possess distinct protein subfraction compositions. Mechanistically, whey protein subfractions have specific anti-cancer effects. Alpha-lactalbumin, human α-lactalbumin made lethal to tumor cell, bovine α-lactalbumin made lethal to tumor cell, bovine serum albumin, and lactoferrin are whey protein subfractions with potential to hinder tumor pathways. Such effects, however, are principally supported by studies performed in vitro and/or in vivo. In clinical practice, whey protein intake-induced anti-cancer effects are indiscernible. However, whey protein supplementation represents a practical, feasible, and cost-effective approach to mitigate cancer cachexia syndrome. The usefulness of whey protein is evidenced by a greater leucine content and the potential to modulate IGF-1 concentrations, representing important factors towards musculoskeletal hypertrophy. Further clinical trials are warranted and needed to establish the effects of whey protein supplementation as an adjuvant to cancer therapy.
Assuntos
Neoplasias/terapia , Proteínas do Soro do Leite/uso terapêutico , Animais , Caquexia/etiologia , Caquexia/metabolismo , Caquexia/terapia , Suplementos Nutricionais , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Neoplasias/complicações , Neoplasias/metabolismoRESUMO
Background: Epigallocatechin 3 Gallate (EGCG) appears to act in appetite control through hormonal modulation. However, there is a lack of elucidation of EGCG's action mechanisms, especially in humans. The aim of this study was to evaluate the effects of acute EGCG supplementation on gastric emptying and its relation to blood hormones, glucose and appetite perceptions in healthy women. Methods: 22 healthy adult women were included in a randomized, double-blind, placebo-controlled crossover study. On two separate occasions, 1 week apart from each other, we offered 800 mg of corn starch (placebo) or 752 mg of EGCG. Appetite was assessed through gastric emptying; perceptions of hunger, desire to eat and satiation; and plasma insulin, adiponectin, leptin and glucose concentrations. The evaluations were carried out in fasting, 30, 90 and 150 min after supplementation. Results: EGCG supplementation induced higher relative gastric volume at 30 and 90 min. Satiation at 90 min was higher in the EGCG group. Adiponectin concentrations at 150 min were higher with EGCG, but no difference was found for glucose, insulin and leptin concentrations. Conclusions: Acute EGCG supplementation is able to delay gastric emptying in healthy women to a small, but statistically significant extent. This study was registered at the Brazilian Registry of Clinical Trials (ReBEC) as RBR-9svwrv.
Assuntos
Catequina/análogos & derivados , Suplementos Nutricionais , Esvaziamento Gástrico/efeitos dos fármacos , Adiponectina/sangue , Adiposidade , Apetite , Glicemia/metabolismo , Índice de Massa Corporal , Brasil , Catequina/administração & dosagem , Estudos Cross-Over , Método Duplo-Cego , Feminino , Humanos , Fome , Insulina/sangue , Leptina/sangue , Saciação , Adulto JovemRESUMO
INTRODUCTION: Studies evaluating caffeinated coffee (CAF) can reveal ergogenic effects; however, studies on the effects of caffeinated coffee on running are scarce and controversial. AIM: To investigate the effects of CAF consumption compared to decaffeinated coffee (DEC) consumption on time trial performances in an 800-m run in overnight-fasting runners. METHODS: A randomly counterbalanced, double-blind, crossover, placebo-controlled study was conducted with 12 healthy adult males with experience in amateur endurance running. Participants conducted two trials on two different occasions, one day with either CAF or DEC, with a one-week washout. After arriving at the data collection site, participants consumed the soluble CAF (5.5 mg/kg of caffeine) or DEC and after 60 min the run was started. Before and after the 800-m race, blood pressure and lactate and glucose concentrations were measured. At the end of the run, the ratings of perceived exertion (RPE) scale was applied. RESULTS: The runners were light consumers of habitual caffeine, with an average ingestion of 91.3 mg (range 6â»420 mg/day). Time trial performances did not change between trials (DEF: 2.38 + 0.10 vs. CAF: 2.39 + 0.09 min, p = 0.336), nor did the RPE (DEC: 16.5 + 2.68 vs. CAF: 17.0 + 2.66, p = 0.326). No difference between the trials was observed for glucose and lactate concentrations, or for systolic and diastolic blood pressure levels. CONCLUSION: CAF consumption failed to enhance the time trial performance of an 800-m run in overnight-fasting runners, when compared with DEC ingestion. In addition, no change was found in RPE, blood pressure levels, or blood glucose and lactate concentrations between the two trials.
Assuntos
Desempenho Atlético , Cafeína/administração & dosagem , Estimulantes do Sistema Nervoso Central/administração & dosagem , Café , Corrida , Adulto , Biomarcadores/sangue , Glicemia/metabolismo , Pressão Sanguínea , Brasil , Estudos Cross-Over , Método Duplo-Cego , Humanos , Ácido Láctico/sangue , Masculino , Análise e Desempenho de Tarefas , Fatores de Tempo , Adulto JovemRESUMO
ß-Hydroxy-ß-methylbutyrate free acid (HMB-FA) has been suggested to accelerate the regenerative capacity of skeletal muscle after high-intensity exercise and attenuate markers of skeletal muscle damage. Herein a systematic review on the use of HMB-FA supplementation as an ergogenic aid to improve measures of muscle recovery, performance, and hypertrophy after resistance training was conducted. This review was performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. We included randomized, double-blinded, placebo-controlled trials investigating the effects of HMB-FA supplementation in conjunction with resistance exercise in humans. The search was conducted using Medline and Google Scholar databases for the terms beta-hydroxy-beta-methylbutyrate, HMB free acid, exercise, resistance exercise, strength training, and HMB supplementation. Only research articles published from 1996 to 2016 in English language were considered for the analysis. Nine studies met the criteria for inclusion in the analyses. Most studies included resistance-trained men, and the primary intervention strategy involved administration of 3g of HMB-FA per day. In conjunction with resistance training, HMB-FA supplementation may attenuate markers of muscle damage, augment acute immune and endocrine responses, and enhance training-induced muscle mass and strength. HMB-FA supplementation may also improve markers of aerobic fitness when combined with high-intensity interval training. Nevertheless, more studies are needed to determine the overall efficacy of HMB-FA supplementation as an ergogenic aid.
Assuntos
Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Treinamento Resistido , Valeratos/administração & dosagem , Adulto , Suplementos Nutricionais , Exercício Físico/fisiologia , Feminino , Humanos , MEDLINE , Masculino , Força Muscular/efeitos dos fármacos , Aptidão Física , Ensaios Clínicos Controlados Aleatórios como AssuntoRESUMO
Sphingosine 1-phosphate receptor 1 (S1PR1) is a G-protein-coupled receptor for sphingosine-1-phosphate (S1P) that has a role in many physiological and pathophysiological processes. Here we show that the S1P/S1PR1 signalling pathway in hypothalamic neurons regulates energy homeostasis in rodents. We demonstrate that S1PR1 protein is highly enriched in hypothalamic POMC neurons of rats. Intracerebroventricular injections of the bioactive lipid, S1P, reduce food consumption and increase rat energy expenditure through persistent activation of STAT3 and the melanocortin system. Similarly, the selective disruption of hypothalamic S1PR1 increases food intake and reduces the respiratory exchange ratio. We further show that STAT3 controls S1PR1 expression in neurons via a positive feedback mechanism. Interestingly, several models of obesity and cancer anorexia display an imbalance of hypothalamic S1P/S1PR1/STAT3 axis, whereas pharmacological intervention ameliorates these phenotypes. Taken together, our data demonstrate that the neuronal S1P/S1PR1/STAT3 signalling axis plays a critical role in the control of energy homeostasis in rats.
Assuntos
Metabolismo Energético , Hipotálamo/metabolismo , Lisofosfolipídeos/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/análogos & derivados , Animais , Homeostase , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Ratos , Ratos Wistar , Receptores de Lisoesfingolipídeo/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Esfingosina/metabolismo , Receptores de Esfingosina-1-FosfatoRESUMO
The control of energy homeostasis relies on robust neuronal circuits that regulate food intake and energy expenditure. Although the physiology of these circuits is well understood, the molecular and cellular response of this program to chronic diseases is still largely unclear. Hypothalamic inflammation has emerged as a major driver of energy homeostasis dysfunction in both obesity and anorexia. Importantly, this inflammation disrupts the action of metabolic signals promoting anabolism or supporting catabolism. In this review, we address the evidence that favors hypothalamic inflammation as a factor that resets energy homeostasis in pathological states.
Assuntos
Sistema Nervoso Central/fisiologia , Metabolismo Energético , Homeostase , Hipotálamo/patologia , Animais , Anorexia/complicações , Anorexia/metabolismo , Anorexia/patologia , Humanos , Hipotálamo/metabolismo , Inflamação/complicações , Insulina/metabolismo , Leptina/metabolismo , Modelos Biológicos , Obesidade/complicações , Obesidade/metabolismo , Obesidade/patologia , Transdução de SinaisRESUMO
Hypothalamic inflammation is associated with insulin and leptin resistance, hyperphagia, and obesity. In this scenario, hypothalamic protein tyrosine phosphatase 1B (PTP1B) has emerged as the key phosphatase induced by inflammation that is responsible for the central insulin and leptin resistance. Here, we demonstrated that acute exercise reduced inflammation and PTP1B protein level/activity in the hypothalamus of obese rodents. Exercise disrupted the interaction between PTP1B with proteins involved in the early steps of insulin (IRß and IRS-1) and leptin (JAK2) signaling, increased the tyrosine phosphorylation of these molecules, and restored the anorexigenic effects of insulin and leptin in obese rats. Interestingly, the anti-inflammatory action and the reduction of PTP1B activity mediated by exercise occurred in an interleukin-6 (IL-6)-dependent manner because exercise failed to reduce inflammation and PTP1B protein level after the disruption of hypothalamic-specific IL-6 action in obese rats. Conversely, intracerebroventricular administration of recombinant IL-6 reproduced the effects of exercise, improving hypothalamic insulin and leptin action by reducing the inflammatory signaling and PTP1B activity in obese rats at rest. Taken together, our study reports that physical exercise restores insulin and leptin signaling, at least in part, by reducing hypothalamic PTP1B protein level through the central anti-inflammatory response.