Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Neurosci ; 34(2): 283-91, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21707790

RESUMO

The classic steroid hormone estradiol is rapidly produced by central auditory neurons in the songbird brain and instantaneously modulates auditory coding to enhance the neural and behavioral discrimination of acoustic signals. Although recent advances highlight novel roles for estradiol in the regulation of central auditory processing, current knowledge on the functional and neurochemical organization of estrogen-associated circuits, as well as the impact of sensory experience in these auditory forebrain networks, remains very limited. Here we show that both estrogen-producing and -sensitive neurons are highly expressed in the caudomedial nidopallium (NCM), the zebra finch analog of the mammalian auditory association cortex, but not other auditory forebrain areas. We further demonstrate that auditory experience primarily engages estrogen-producing, and to a lesser extent, estrogen-responsive neurons in NCM, that these neuronal populations moderately overlap and that acute episodes of sensory experience do not quantitatively affect these circuits. Finally, we show that whereas estrogen-producing cells are neurochemically heterogeneous, estrogen-sensitive neurons are primarily glutamatergic. These findings reveal the neurochemical and functional organization of estrogen-associated circuits in the auditory forebrain, demonstrate their activation and stability in response to sensory experience in behaving animals, and highlight estrogenic circuits as fundamental components of central networks supporting sensory processing.


Assuntos
Córtex Auditivo/fisiologia , Vias Auditivas/fisiologia , Estrogênios/metabolismo , Tentilhões/anatomia & histologia , Tentilhões/fisiologia , Vocalização Animal/fisiologia , Estimulação Acústica , Animais , Aromatase/metabolismo , Córtex Auditivo/anatomia & histologia , Vias Auditivas/anatomia & histologia , Percepção Auditiva/fisiologia , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Feminino , Hibridização in Situ Fluorescente , Masculino , Neurônios/fisiologia , Neurotransmissores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Dev Neurobiol ; 71(10): 803-17, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21542134

RESUMO

GABAergic transmission influences sensory processing and experience-dependent plasticity in the adult brain. Little is known about the functional organization of inhibitory circuits in the auditory forebrain of songbirds, a robust model extensively used in the study of central auditory processing of behaviorally relevant communication signals. In particular, no information is currently available on the expression and organization of GABAA receptor-expressing neurons. Here, we studied the distribution and regulation of GABAA receptors in the songbird auditory forebrain, with a specific focus on α5, a subunit implicated in tonic inhibition and sensory learning. We obtained a zebra finch cDNA that encodes the α5-subunit (GABRA5) and carried out a detailed analysis of its expression via in situ hybridization. GABRA5 was highly expressed in the caudomedial nidopallium (NCM), caudomedial mesopallium, and field L2. Using double fluorescence in situ hybridization, we demonstrate that a large fraction of GABRA5-expressing neurons is engaged by auditory experience, as revealed by the song-induced expression of the activity-dependent gene zenk. Remarkably, we also found that α5 expression is rapidly regulated by sensory stimulation: 30 min of conspecific song playbacks significantly increase the number of GABRA5-expressing neurons in NCM, but not in other auditory areas. This effect is selective for α5, but not γ2 transcripts. Our results suggest that α5-containing GABAA receptors likely play a key role in central auditory processing and may contribute to the experience-dependent plasticity underlying auditory learning.


Assuntos
Regulação da Expressão Gênica/fisiologia , Neurônios/metabolismo , Prosencéfalo/citologia , Prosencéfalo/metabolismo , Receptores de GABA-A/metabolismo , Estimulação Acústica/métodos , Análise de Variância , Animais , Feminino , Tentilhões , Masculino , RNA Mensageiro , Receptores de GABA-A/genética , Fatores de Tempo
3.
J Neurosci ; 29(18): 5949-63, 2009 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-19420261

RESUMO

Estradiol impacts a wide variety of brain processes, including sex differentiation, mood, and learning. Here we show that estradiol regulates auditory processing of acoustic signals in the vertebrate brain, more specifically in the caudomedial nidopallium (NCM), the songbird analog of the mammalian auditory association cortex. Multielectrode recordings coupled with local pharmacological manipulations in awake animals reveal that both exogenous and locally generated estradiol increase auditory-evoked activity in NCM. This enhancement in neuronal responses is mediated by suppression of local inhibitory transmission. Surprisingly, we also found that estradiol is both necessary and sufficient for the induction of multiple mitogen-activated protein kinase (MAPK)-dependent genes thought to be required for synaptic plasticity and memorization of birdsong. Specifically, we show that local blockade of estrogen receptors or aromatase activity in awake birds decrease song-induced MAPK-dependent gene expression. Infusions of estradiol in acoustically isolated birds induce transcriptional activation of these genes to levels comparable with song-stimulated animals. Our results reveal acute and rapid nongenomic functions for estradiol in central auditory physiology and suggest that such roles may be ubiquitously expressed across sensory systems.


Assuntos
Encéfalo , Estradiol/farmacologia , Estrogênios/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Estimulação Acústica/métodos , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Análise de Variância , Androstatrienos/farmacologia , Animais , Bicuculina/farmacologia , Biofísica , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Relação Dose-Resposta a Droga , Estimulação Elétrica/métodos , Inibidores Enzimáticos/farmacologia , Antagonistas de Estrogênios/farmacologia , Potenciais Evocados Auditivos/efeitos dos fármacos , Potenciais Evocados Auditivos/fisiologia , Feminino , Tentilhões , Análise de Fourier , Lateralidade Funcional/efeitos dos fármacos , Lateralidade Funcional/fisiologia , Antagonistas GABAérgicos/farmacologia , Regulação da Expressão Gênica/fisiologia , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Microinjeções/métodos , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Plasticidade Neuronal/fisiologia , Técnicas de Patch-Clamp/métodos , Psicoacústica , Tamoxifeno/farmacologia , Fatores de Tempo , Vigília
4.
Nat Protoc ; 3(8): 1370-9, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18714305

RESUMO

Here we describe a fluorescence in situ hybridization protocol that allows for the detection of two mRNA species in fresh frozen brain tissue sections. This protocol entails the simultaneous and specific hybridization of hapten-labeled riboprobes to complementary mRNAs of interest, followed by probe detection via immunohistochemical procedures and peroxidase-mediated precipitation of tyramide-linked fluorophores. In this protocol we describe riboprobes labeled with digoxigenin and biotin, though the steps can be adapted to labeling with other haptens. We have used this approach to establish the neurochemical identity of sensory-driven neurons and the co-induction of experience-regulated genes in the songbird brain. However, this procedure can be used to detect virtually any combination of two mRNA populations at single-cell resolution in the brain, and possibly other tissues. Required controls, representative results and troubleshooting of important steps of this procedure are presented. After tissue sections are obtained, the total length of the procedure is 2-3 d.


Assuntos
Genômica/métodos , Hibridização in Situ Fluorescente/métodos , RNA Mensageiro/análise , Acetilação , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Tentilhões/genética , Tentilhões/metabolismo , Regulação da Expressão Gênica , Hibridização in Situ Fluorescente/instrumentação , Microtomia , Neurônios Aferentes/metabolismo , Sondas RNA/análise , RNA Mensageiro/química , Análise de Sequência de RNA/métodos
5.
J Neurophysiol ; 100(1): 441-55, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18480371

RESUMO

The role of GABA in the central processing of complex auditory signals is not fully understood. We have studied the involvement of GABA A-mediated inhibition in the processing of birdsong, a learned vocal communication signal requiring intact hearing for its development and maintenance. We focused on caudomedial nidopallium (NCM), an area analogous to parts of the mammalian auditory cortex with selective responses to birdsong. We present evidence that GABA A-mediated inhibition plays a pronounced role in NCM's auditory processing of birdsong. Using immunocytochemistry, we show that approximately half of NCM's neurons are GABAergic. Whole cell patch-clamp recordings in a slice preparation demonstrate that, at rest, spontaneously active GABAergic synapses inhibit excitatory inputs onto NCM neurons via GABA A receptors. Multi-electrode electrophysiological recordings in awake birds show that local blockade of GABA A-mediated inhibition in NCM markedly affects the temporal pattern of song-evoked responses in NCM without modifications in frequency tuning. Surprisingly, this blockade increases the phasic and largely suppresses the tonic response component, reflecting dynamic relationships of inhibitory networks that could include disinhibition. Thus processing of learned natural communication sounds in songbirds, and possibly other vocal learners, may depend on complex interactions of inhibitory networks.


Assuntos
Córtex Auditivo/citologia , Percepção Auditiva/fisiologia , Inibição Neural/fisiologia , Neurônios/fisiologia , Vocalização Animal , Estimulação Acústica/métodos , Potenciais de Ação/fisiologia , Animais , Vias Auditivas/fisiologia , Bicuculina/farmacologia , Contagem de Células/métodos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Tentilhões , Lateralidade Funcional , Antagonistas GABAérgicos/farmacologia , Glutamato Descarboxilase/metabolismo , Técnicas In Vitro , Masculino , Modelos Biológicos , Inibição Neural/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp/métodos , Quinoxalinas/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo
6.
Eur J Neurosci ; 22(7): 1667-78, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16197507

RESUMO

Song behavior in songbirds induces the expression of activity-dependent genes in brain areas involved in perceptual processing, production and learning of song. This genomic response is thought to represent a link between neuronal activation and long-term changes in song-processing circuits of the songbird brain. Here we demonstrate that Arc, an activity-regulated gene whose product has dendritic localization and is associated with synaptic plasticity, is rapidly induced by song in the brain of zebra finches. We show that, in the context of song auditory stimulation, Arc expression is induced in several telencephalic auditory areas, most prominently the caudomedial nidopallium and mesopallium, whereas in the context of singing, Arc is also induced in song control areas, namely nucleus HVC, used as a proper name, the robust nucleus of the arcopallium and the interface nucleus of the nidopallium. We also show that song-induced Arc expression co-localizes at the cellular level with those of the transcriptional regulators zenk and c-fos, and that the song induction of these three genes is dependent on activation of the mitogen-activated protein kinase signaling pathway. These findings provide evidence for an involvement of Arc in the brain's response to birdsong. They also demonstrate that genes representing distinct genomic and cellular regulatory programs, namely early effectors and transcription factors, are co-activated in the same neuronal cells by a naturally learned stimulus.


Assuntos
Vias Auditivas/fisiologia , Encéfalo/metabolismo , Regulação da Expressão Gênica/fisiologia , Expressão Gênica/fisiologia , Vocalização Animal/fisiologia , Estimulação Acústica/métodos , Animais , Comportamento Animal , Northern Blotting/métodos , Encéfalo/anatomia & histologia , Clonagem Molecular/métodos , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Densitometria/métodos , Tentilhões , Expressão Gênica/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Hibridização In Situ/métodos , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Alinhamento de Sequência , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA