Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Med Sci Sports Exerc ; 54(9): 1572-1581, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35438672

RESUMO

INTRODUCTION: Plant-derived proteins have received considerable attention as an alternative to animal-based proteins and are now frequently used in both plant-based diets and sports nutrition products. However, little information is available on the anabolic properties of potato-derived protein. This study compares muscle protein synthesis rates after the ingestion of 30 g potato protein versus 30 g milk protein at rest and during recovery from a single bout of resistance exercise in healthy, young males. METHODS: In a randomized, double-blind, parallel-group design, 24 healthy young males (24 ± 4 yr) received primed continuous l -[ ring - 13 C 6 ]-phenylalanine infusions while ingesting 30 g potato-derived protein or 30 g milk protein after a single bout of unilateral resistance exercise. Blood and muscle biopsies were collected for 5 h after protein ingestion to assess postprandial plasma amino acid profiles and mixed muscle protein synthesis rates at rest and during recovery from exercise. RESULTS: Ingestion of both potato and milk protein increased mixed muscle protein synthesis rates when compared with basal postabsorptive values (from 0.020% ± 0.011% to 0.053% ± 0.017%·h -1 and from 0.021% ± 0.014% to 0.050% ± 0.012%·h -1 , respectively; P < 0.001), with no differences between treatments ( P = 0.54). In the exercised leg, mixed muscle protein synthesis rates increased to 0.069% ± 0.019% and 0.064% ± 0.015%·h -1 after ingesting potato and milk protein, respectively ( P < 0.001), with no differences between treatments ( P = 0.52). The muscle protein synthetic response was greater in the exercised compared with the resting leg ( P < 0.05). CONCLUSIONS: Ingestion of 30 g potato protein concentrate increases muscle protein synthesis rates at rest and during recovery from exercise in healthy, young males. Muscle protein synthesis rates after the ingestion of 30 g potato protein do not differ from rates observed after ingesting an equivalent amount of milk protein.


Assuntos
Proteínas Alimentares , Proteínas Musculares , Solanum tuberosum , Adulto , Proteínas Alimentares/metabolismo , Método Duplo-Cego , Ingestão de Alimentos , Humanos , Masculino , Proteínas do Leite , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Treinamento Resistido , Solanum tuberosum/metabolismo , Adulto Jovem
2.
Nutrients ; 9(3)2017 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-28327503

RESUMO

It has been shown that nitrate supplementation can enhance endurance exercise performance. Recent work suggests that nitrate ingestion can also increase intermittent type exercise performance in recreational athletes. We hypothesized that six days of nitrate supplementation can improve high-intensity intermittent type exercise performance in trained soccer players. Thirty-two male soccer players (age: 23 ± 1 years, height: 181 ± 1 m, weight: 77 ± 1 kg, playing experience: 15.2 ± 0.5 years, playing in the first team of a 2nd or 3rd Dutch amateur league club) participated in this randomized, double-blind cross-over study. All subjects participated in two test days in which high-intensity intermittent running performance was assessed using the Yo-Yo IR1 test. Subjects ingested nitrate-rich (140 mL; ~800 mg nitrate/day; BR) or a nitrate-depleted beetroot juice (PLA) for six subsequent days, with at least eight days of wash-out between trials. The distance covered during the Yo-Yo IR1 was the primary outcome measure, while heart rate (HR) was measured continuously throughout the test, and a single blood and saliva sample were collected just prior to the test. Six days of BR ingestion increased plasma and salivary nitrate and nitrite concentrations in comparison to PLA (p < 0.001), and enhanced Yo-Yo IR1 test performance by 3.4 ± 1.3% (from 1574 ± 47 to 1623 ± 48 m; p = 0.027). Mean HR was lower in the BR (172 ± 2) vs. PLA trial (175 ± 2; p = 0.014). Six days of BR ingestion effectively improves high-intensity intermittent type exercise performance in trained soccer players.


Assuntos
Desempenho Atlético , Beta vulgaris/química , Sucos de Frutas e Vegetais , Treinamento Intervalado de Alta Intensidade , Fenômenos Fisiológicos da Nutrição Esportiva , Estatura , Peso Corporal , Estudos Cross-Over , Método Duplo-Cego , Frequência Cardíaca , Humanos , Masculino , Países Baixos , Nitratos/administração & dosagem , Nitratos/análise , Nitritos/administração & dosagem , Nitritos/análise , Raízes de Plantas/química , Saliva/química , Futebol , Resultado do Tratamento , Adulto Jovem
3.
Sports Med ; 47(3): 383-391, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27430501

RESUMO

Elite athletes and coaches are in a constant search for training methods and nutritional strategies to support training and recovery efforts that may ultimately maximize athletes' performance. Recently, there has been a re-emerging interest in the role of ketone bodies in exercise metabolism, with considerable media speculation about ketone body supplements being routinely used by professional cyclists. Ketone bodies can serve as an important energy substrate under certain conditions, such as starvation, and can modulate carbohydrate and lipid metabolism. Dietary strategies to increase endogenous ketone body availability (i.e., a ketogenic diet) require a diet high in lipids and low in carbohydrates for ~4 days to induce nutritional ketosis. However, a high fat, low carbohydrate ketogenic diet may impair exercise performance via reducing the capacity to utilize carbohydrate, which forms a key fuel source for skeletal muscle during intense endurance-type exercise. Recently, ketone body supplements (ketone salts and esters) have emerged and may be used to rapidly increase ketone body availability, without the need to first adapt to a ketogenic diet. However, the extent to which ketone bodies regulate skeletal muscle bioenergetics and substrate metabolism during prolonged endurance-type exercise of varying intensity and duration remains unknown. Therefore, at present there are no data available to suggest that ingestion of ketone bodies during exercise improves athletes' performance under conditions where evidence-based nutritional strategies are applied appropriately.


Assuntos
Atletas , Desempenho Atlético , Metabolismo Energético , Exercício Físico/fisiologia , Corpos Cetônicos/metabolismo , Resistência Física , Carboidratos da Dieta , Suplementos Nutricionais , Humanos , Corpos Cetônicos/administração & dosagem , Músculo Esquelético/metabolismo
4.
Int J Sport Nutr Exerc Metab ; 27(1): 11-17, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27616745

RESUMO

While the majority of studies reporting ergogenic effects of dietary nitrate have used a multiday supplementation protocol, some studies suggest that a single dose of dietary nitrate before exercise can also improve subsequent performance. We aimed to compare the impact of acute and 6-day sodium nitrate supplementation on oxygen uptake (V̇O2) and time-trial performance in trained cyclists. Using a randomized, double-blind, cross-over design, 17 male cyclists (25 ± 4 y, V̇O2peak 65 ± 4 ml·kg-1·min-1, Wmax 411 ± 35 W) were subjected to 3 different trials; 5 days placebo and 1 day sodium nitrate supplementation (1-DAY); 6 days sodium nitrate supplementation (6-DAY); 6 days placebo supplementation (PLA). Nitrate was administered as 1097 mg sodium nitrate providing 800 mg (~12.9 mmol) nitrate per day. Three hours after ingestion of the last supplemental bolus, indirect calorimetry was performed while subjects performed 30 min of exercise at 45% Wmax and 30 min at 65% Wmax on a cycle ergometer, followed by a 10 km time-trial. Immediately before exercise, plasma [nitrate] and [nitrite] increased to a similar extent during the 6-DAY and 1-DAY trial, but not with PLA (plasma nitrite: 501 ± 205, 553 ± 278, and 239 ± 74 nM, respectively; p < .001). No differences were observed between interventions in V̇O2 during submaximal exercise, or in time to complete the time-trial (6-DAY: 1004 ± 61, 1-DAY: 1022 ± 72, PLA: 1017 ± 71 s; p = .28). We conclude that both acute and 6-days of sodium nitrate supplementation do not alter V̇O2 during submaximal exercise or improve time-trial performance in highly trained cyclists, despite increasing plasma [nitrate] and [nitrite].


Assuntos
Desempenho Atlético , Suplementos Nutricionais , Nitratos/administração & dosagem , Consumo de Oxigênio/efeitos dos fármacos , Substâncias para Melhoria do Desempenho/administração & dosagem , Adulto , Atletas , Ciclismo , Pressão Sanguínea/efeitos dos fármacos , Índice de Massa Corporal , Estudos Cross-Over , Método Duplo-Cego , Exercício Físico , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Humanos , Masculino , Nitratos/sangue , Nitritos/sangue , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA