Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant J ; 109(4): 992-1013, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34839543

RESUMO

IRON-REGULATED TRANSPORTER1 (IRT1) is the root high-affinity ferrous iron (Fe) uptake system and indispensable for the completion of the life cycle of Arabidopsis thaliana without vigorous Fe supplementation. Here we provide evidence supporting a second role of IRT1 in root-to-shoot partitioning of Fe. We show that irt1 mutants overaccumulate Fe in roots, most prominently in the cortex of the differentiation zone in irt1-2, compared to the wild type. Shoots of irt1-2 are severely Fe-deficient according to Fe content and marker transcripts, as expected. We generated irt1-2 lines producing IRT1 mutant variants carrying single amino-acid substitutions of key residues in transmembrane helices IV and V, Ser206 and His232, which are required for transport activity in yeast. Root short-term 55 Fe uptake rates were uninformative concerning IRT1-mediated transport. Overall irt1-like concentrations of the secondary substrate Mn suggested that the transgenic Arabidopsis lines also remain incapable of IRT1-mediated root Fe uptake. Yet, IRT1S206A partially complements rosette dwarfing and leaf chlorosis of irt1-2, as well as root-to-shoot Fe partitioning and gene expression defects of irt1-2, all of which are fully complemented by wild-type IRT1. Taken together, these results suggest a regulatory function for IRT1 in root-to-shoot Fe partitioning that does not require Fe transport activity of IRT1. Among the genes of which transcript levels are partially dependent on IRT1, we identify MYB DOMAIN PROTEIN10, MYB DOMAIN PROTEIN72 and NICOTIANAMINE SYNTHASE4 as candidates for effecting IRT1-dependent Fe mobilization in roots. Understanding the biological functions of IRT1 will help to improve Fe nutrition and the nutritional quality of agricultural crops.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Compostos Ferrosos/metabolismo , Proteínas Reguladoras de Ferro/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Proteínas de Transporte de Cátions/genética , Diferenciação Celular , Regulação da Expressão Gênica de Plantas , Homeostase , Proteínas Reguladoras de Ferro/genética , Folhas de Planta/metabolismo , Raízes de Plantas/citologia , Brotos de Planta/citologia , Transcriptoma
2.
PLoS One ; 7(4): e35545, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22536404

RESUMO

Plants have evolved a variety of mechanisms for dealing with insect herbivory among which chemical defense through secondary metabolites plays a prominent role. Physiological, behavioural and sensorical adaptations to these chemicals provide herbivores with selective advantages allowing them to diversify within the newly occupied ecological niche. In turn, this may influence the evolution of plant metabolism giving rise to e.g. new chemical defenses. The association of Pierid butterflies and plants of the Brassicales has been cited as an illustrative example of this adaptive process known as 'coevolutionary armsrace'. All plants of the Brassicales are defended by the glucosinolate-myrosinase system to which larvae of cabbage white butterflies and related species are biochemically adapted through a gut nitrile-specifier protein. Here, we provide evidence by metabolite profiling and enzyme assays that metabolism of benzylglucosinolate in Pieris rapae results in release of equimolar amounts of cyanide, a potent inhibitor of cellular respiration. We further demonstrate that P. rapae larvae develop on transgenic Arabidopsis plants with ectopic production of the cyanogenic glucoside dhurrin without ill effects. Metabolite analyses and fumigation experiments indicate that cyanide is detoxified by ß-cyanoalanine synthase and rhodanese in the larvae. Based on these results as well as on the facts that benzylglucosinolate was one of the predominant glucosinolates in ancient Brassicales and that ancient Brassicales lack nitrilases involved in alternative pathways, we propose that the ability of Pierid species to safely handle cyanide contributed to the primary host shift from Fabales to Brassicales that occured about 75 million years ago and was followed by Pierid species diversification.


Assuntos
Arabidopsis/metabolismo , Borboletas/metabolismo , Glucosinolatos/metabolismo , Nasturtium/metabolismo , Nitrilas/metabolismo , Folhas de Planta/metabolismo , Tropaeolum/metabolismo , Aminoidrolases/genética , Aminoidrolases/metabolismo , Animais , Arabidopsis/genética , Fezes/química , Herbivoria , Hidroxilação , Proteínas de Insetos/química , Proteínas de Insetos/isolamento & purificação , Larva/enzimologia , Larva/metabolismo , Microssomos/enzimologia , Microssomos/metabolismo , Nasturtium/genética , Folhas de Planta/genética , Tiocianatos/metabolismo , Tioglucosídeos/metabolismo , Tropaeolum/genética
3.
Planta ; 233(6): 1185-97, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21327819

RESUMO

Berberine, palmatine and dehydrocoreximine are end products of protoberberine biosynthesis. These quaternary protoberberines are elicitor inducible and, like other phytoalexins, are highly oxidized. The oxidative potential of these compounds is derived from a diverse array of biosynthetic steps involving hydroxylation, intra-molecular C-C coupling, methylenedioxy bridge formation and a dehydrogenation reaction as the final step in the biosynthesis. For the berberine biosynthetic pathway, the identification of the dehydrogenase gene is the last remaining uncharacterized step in the elucidation of the biosynthesis at the gene level. An enzyme able to catalyze these reactions, (S)-tetrahydroprotoberberine oxidase (STOX, EC 1.3.3.8), was originally purified in the 1980s from suspension cells of Berberis wilsoniae and identified as a flavoprotein (Amann et al. 1984). We report enzymatic activity from recombinant STOX expressed in Spodoptera frugiperda Sf9 insect cells. The coding sequence was derived successively from peptide sequences of purified STOX protein. Furthermore, a recombinant oxidase with protoberberine dehydrogenase activity was obtained from a cDNA library of Argemone mexicana, a traditional medicinal plant that contains protoberberine alkaloids. The relationship of the two enzymes is discussed regarding their enzymatic activity, phylogeny and the alkaloid occurrence in the plants. Potential substrate binding and STOX-specific amino acid residues were identified based on sequence analysis and homology modeling.


Assuntos
Argemone/enzimologia , Berberis/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/biossíntese , Sequência de Aminoácidos , Animais , Argemone/genética , Argemone/metabolismo , Sequência de Bases , Alcaloides de Berberina/metabolismo , Berberis/genética , Berberis/metabolismo , Ativação Enzimática , Flavoproteínas/metabolismo , Regulação da Expressão Gênica de Plantas , Insetos/enzimologia , Insetos/genética , Dados de Sequência Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Filogenia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Homologia de Sequência , Sesquiterpenos/metabolismo , Transformação Genética , Fitoalexinas
4.
J Biol Chem ; 280(6): 4329-38, 2005 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-15569691

RESUMO

Under anaerobiosis, Euglena gracilis mitochondria perform a malonyl-CoA independent synthesis of fatty acids leading to accumulation of wax esters, which serve as the sink for electrons stemming from glycolytic ATP synthesis and pyruvate oxidation. An important enzyme of this unusual pathway is trans-2-enoyl-CoA reductase (EC 1.3.1.44), which catalyzes reduction of enoyl-CoA to acyl-CoA. Trans-2-enoyl-CoA reductase from Euglena was purified 1700-fold to electrophoretic homogeneity and was active with NADH and NADPH as the electron donor. The active enzyme is a monomer with molecular mass of 44 kDa. The amino acid sequence of tryptic peptides determined by electrospray ionization mass spectrometry were used to clone the corresponding cDNA, which encoded a polypeptide that, when expressed in Escherichia coli and purified by affinity chromatography, possessed trans-2-enoyl-CoA reductase activity close to that of the enzyme purified from Euglena. Trans-2-enoyl-CoA reductase activity is present in mitochondria and the mRNA is expressed under aerobic and anaerobic conditions. Using NADH, the recombinant enzyme accepted crotonyl-CoA (km=68 microm) and trans-2-hexenoyl-CoA (km=91 microm). In the crotonyl-CoA-dependent reaction, both NADH (km=109 microm) or NADPH (km=119 microm) were accepted, with 2-3-fold higher specific activities for NADH relative to NADPH. Trans-2-enoyl-CoA reductase homologues were not found among other eukaryotes, but are present as hypothetical reading frames of unknown function in sequenced genomes of many proteobacteria and a few Gram-positive eubacteria, where they occasionally occur next to genes involved in fatty acid and polyketide biosynthesis. Trans-2-enoyl-CoA reductase assigns a biochemical activity, NAD(P)H-dependent acyl-CoA synthesis from enoyl-CoA, to one member of this gene family of previously unknown function.


Assuntos
Euglena gracilis/metabolismo , Metabolismo dos Lipídeos , Mitocôndrias/enzimologia , NADH NADPH Oxirredutases/fisiologia , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Northern Blotting , Western Blotting , Catálise , Cromatografia , Clonagem Molecular , Meios de Cultura , DNA Complementar/metabolismo , Elétrons , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Evolução Molecular , Ácidos Graxos/metabolismo , Cinética , Espectrometria de Massas , Dados de Sequência Molecular , NAD/metabolismo , NADH NADPH Oxirredutases/metabolismo , NADP/metabolismo , Hibridização de Ácido Nucleico , Fases de Leitura Aberta , Óperon , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Peptídeos/química , Filogenia , Ligação Proteica , Estrutura Terciária de Proteína , Coloração pela Prata , Tripsina/química
5.
J Biol Chem ; 279(49): 50717-25, 2004 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-15358770

RESUMO

The phytotoxin coronatine is a structural analog of octadecanoid signaling molecules, which are well known mediators of plant defense reactions. To isolate novel coronatine-regulated genes from Arabidopsis thaliana, differential mRNA display was performed. Transcript levels of CORI-7 (coronatine induced-7) were rapidly and transiently increased in coronatine-treated plants, and the corresponding cDNA was found to encode the sulfotransferase AtST5a. Likewise, upon wounding, an immediate and transient increase in AtST5a mRNA levels could be observed in both locally wounded and unwounded (systemic) leaves. Furthermore, application of octadecanoids and ethylene as compounds involved in plant wound defense reactions resulted in AtST5a gene activation, whereas pathogen defense-related signals (yeast elicitor and salicylic acid) were inactive. AtST5a and its close homologs AtST5b and AtST5c were purified as His6-tagged proteins from Escherichia coli. The three enzymes were shown to catalyze the final step in the biosynthesis of the glucosinolate (GS) core structure, the sulfation of desulfoglucosinolates (dsGSs). They accept a broad range of dsGSs as substrates. However, in a competitive situation, AtST5a clearly prefers tryptophan- and phenylalanine-derived dsGSs, whereas long chain dsGSs derived from methionine are the preferred substrates of AtST5b and AtST5c. Treatment of Arabidopsis plants with low concentrations of coronatine resulted in an increase in the amounts of specific GSs, primarily glucobrassicin and neoglucobrassicin. Hence, it is suggested that AtST5a is the sulfotransferase responsible for the biosynthesis of tryptophan-derived GSs in vivo.


Assuntos
Arabidopsis/enzimologia , Regulação da Expressão Gênica de Plantas , Glucosinolatos/química , Sulfotransferases/química , Aminoácidos/química , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/química , Fenômenos Bioquímicos , Bioquímica , Northern Blotting , Catálise , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , DNA Complementar/metabolismo , Escherichia coli/metabolismo , Etilenos/química , Perfilação da Expressão Gênica , Glucosinolatos/biossíntese , Indenos/química , Indóis/química , Modelos Químicos , Filogenia , Estrutura Terciária de Proteína , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade por Substrato , Sulfotransferases/biossíntese , Sulfotransferases/metabolismo , Fatores de Tempo , Ativação Transcricional , Triptofano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA