Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microbiol Spectr ; 10(4): e0058322, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35736238

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is a bacterial pathogen that presents great health concerns. Treatment requires the use of last-line antibiotics, such as members of the oxazolidinone family, of which linezolid is the first member to see regular use in the clinic. Here, we report a short time scale selection experiment in which strains of MRSA were subjected to linezolid treatment. Clonal isolates which had evolved a linezolid-resistant phenotype were characterized by whole-genome sequencing. Linezolid-resistant mutants were identified which had accumulated mutations in the ribosomal protein uL3. Multiple clones which had two mutations in uL3 exhibited resistance to linezolid, 2-fold higher than the clinical breakpoint. Ribosomes from this strain were isolated and subjected to single-particle cryo-electron microscopic analysis and compared to the ribosomes from the parent strain. We found that the mutations in uL3 lead to a rearrangement of a loop that makes contact with Helix 90, propagating a structural change over 15 Å away. This distal change swings nucleotide U2504 into the binding site of the antibiotic, causing linezolid resistance. IMPORTANCE Antibiotic resistance poses a critical problem to human health and decreases the utility of these lifesaving drugs. Of particular concern is the "superbug" methicillin-resistant Staphylococcus aureus (MRSA), for which treatment of infection requires the use of last-line antibiotics, including linezolid. In this paper, we characterize the atomic rearrangements which the ribosome, the target of linezolid, undergoes during its evolutionary journey toward becoming drug resistant. Using cryo-electron microscopy, we describe a particular molecular mechanism which MRSA uses to become resistant to linezolid.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Microscopia Crioeletrônica , Humanos , Linezolida/metabolismo , Linezolida/farmacologia , Linezolida/uso terapêutico , Staphylococcus aureus Resistente à Meticilina/genética , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética
2.
Endocrinology ; 147(12): 5940-7, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16959830

RESUMO

Functional disruption of either MC3R or MC4R results in obesity, implicating both in the control of energy homeostasis. The ligands for these receptors are derived from the prohormone proopiomelancortin (POMC), which is posttranslationally processed to produce a set of melanocortin peptides with a range of activities at the MC3R and MC4R. The relative importance of each of these peptides alpha-MSH, gamma3-MSH, gamma2-MSH, gamma-lipotropin (gamma-LPH) and, in man but not in rodents, beta-MSH] in the maintenance of energy homeostasis is, as yet, unclear. To investigate this further, equimolar amounts (2 nmol) of each peptide were centrally administered to freely feeding, corticosterone-supplemented, Pomc null (Pomc-/-) mice. After a single dose at the onset of the dark cycle, alpha-MSH had the most potent anorexigenic effect, reducing food intake to 35% of sham-treated animals. beta-MSH, gamma-LPH, and gamma3- and gamma2-MSH all reduced food intake but to a lesser degree. The effects of peptide administration over 3 d were also assessed. Only alpha-MSH significantly reduced body weight, affecting both fat and lean mass. Other peptides had no significant effect on body weight. Pair-feeding of sham-treated mice to those treated with alpha-MSH resulted in identical changes in total weight, fat and lean mass indicating that the effects of alpha-MSH were primarily due to reduced food intake rather than increased energy expenditure. Although other melanocortins can reduce food intake in the short-term, only alpha-MSH can reduce the excess fat and lean mass found in Pomc-/- mice, mediated largely through an effect on food intake.


Assuntos
Peso Corporal/efeitos dos fármacos , Sistema Nervoso Central/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Melanocortinas/farmacologia , Pró-Opiomelanocortina/genética , Animais , Regulação do Apetite/efeitos dos fármacos , Regulação do Apetite/fisiologia , Vias de Administração de Medicamentos , Masculino , Melanocortinas/administração & dosagem , Camundongos , Camundongos Knockout , Placebos , Pró-Opiomelanocortina/química , Redução de Peso/efeitos dos fármacos , alfa-MSH/farmacologia , alfa-MSH/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA