Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microorganisms ; 11(9)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37764109

RESUMO

Antimicrobial resistance (AMR) has emerged as a global health crisis, necessitating the search for innovative strategies to combat infectious diseases. The unique biodiversity of Italian flora offers a treasure trove of plant species and their associated phytochemicals, which hold immense potential as a solution to address AMR. By investigating the antimicrobial properties of Italian flora and their phytochemical constituents, this study aims to shed light on the potential of phyto-complexes as a valuable resource for developing novel or supportive antimicrobial agents useful for animal production.

2.
Animals (Basel) ; 12(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36290268

RESUMO

Parasites, in particular, gastrointestinal nematodes (GINs) represent one of the main burdens affecting small ruminant farming and pose a serious threat to their health, welfare, productivity, and reproduction. The correct management of animals and the correct use of anthelmintic drugs are the pillars of the GIN control programs for small ruminants. However, globally due to the indiscriminate use of synthetic anthelmintics, there is a significant increase in anthelmintic resistance phenomena to one or more classes of drugs. Even if such a problem never represented a serious threat in southern Italy because of the favourable environmental conditions and because of the good farm management, the phenomenon is actually showing a steep increasing trend and requires alternative treatment measures and constant monitoring. The use of phytotherapies is considered a valuable alternative approach for GIN control in small ruminants and could help with reducing the amount of synthetic drugs used and the forthcoming anthelmintic resistance. From this perspective, the Calabria territory offers a wide number of plants with anthelmintic efficacy that could be helpful for this purpose. The aim of this study was to evaluate the anthelmintic efficacy of aqueous pomegranate (Punica granatum L.) macerate compared to the treatment with Ivermectin and Albendazole in sheep naturally infected with GINs. The pomegranate macerate derives from the ethnoveterinary knowledge of the Calabria region, Southern Italy. The anthelmintic efficacy was evaluated according to the faecal egg count reduction test (FECRt) using the FLOTAC techniques in two sheep farms in Southern Italy. The FECR was calculated from individual samples using the formula FECR = 100 × (1 - [T2/C2]). The treatment with Albendazole in the first farm showed an efficacy of 99.8% after 14 days and 94.8% after 21 days, while the treatment with Ivermectin in the second farm showed an efficacy of 99.9% after 14 days and 96.5% after 21 days of treatment. The pomegranate macerate, in both farms, showed a value of efficacy of around 50% from day 7 to day 21 after the treatment. Previous studies highlighted the presence of gallic acid as the main component in the pomegranate macerate, and its efficacy in nematode control has been as well previously demonstrated in other plant extracts. This in vivo study demonstrated the unequivocal efficacy of plant macerate in easily reducing 50% of the number of GIN eggs in sheep faeces. These results, obtained without the use of synthetic anthelmintics, indicate the use of green veterinary pharmacology as a sustainable alternative to the use of synthetic drugs to reduce the increase in drug resistance phenomena and the environmental impact.

3.
Vet Sci ; 9(3)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35324857

RESUMO

Sheep gastrointestinal nematode (GIN) infestation represents a limiting factor for sheep farming and milk production in Italy. The development of anthelmintic resistance to conventionally used drugs suggests the path towards the use of natural remedies as a possible alternative. The purpose of this study is to evaluate the in vitro anthelmintic efficacy of the hydroalcoholic extracts of basal leaves (It-BL), cauline leaves (It-CL) and flowers (It-F) of Isatis tinctoria (Brassicaceae), a spontaneous Sicilian species renowned as an important source of bioactive compounds. The dry extracts of the different parts of the plant were tested using the egg hatch test (EHT) in vitro to verify the efficacy against ovine GIN at different concentrations (1.00, 0.5, 0.25, 0.125 mg/mL). Thiabendazole and deionized water were used as positive and negative controls, respectively. The results obtained from EHT indicated that all the I. tinctoria extracts were highly effective (p < 0.0001) in inhibiting egg hatching within 48 h of exposure. The in vitro inhibitory effect was never less than 84% in all doses tested, and it was only slightly lower than the standard drug thiabendazole (95.6%). The current study documents the anthelmintic activity of I. tinctoria against sheep's GIN, suggesting its application as alternative natural method to limit the use of antiparasitic drugs.

4.
Clin Rev Allergy Immunol ; 62(1): 37-63, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32876924

RESUMO

This review searched for published evidence that could explain how different physicochemical properties impact on the allergenicity of food proteins and if their effects would follow specific patterns among distinct protein families. Owing to the amount and complexity of the collected information, this literature overview was divided in two articles, the current one dedicated to protein families of plant allergens and a second one focused on animal allergens. Our extensive analysis of the available literature revealed that physicochemical characteristics had consistent effects on protein allergenicity for allergens belonging to the same protein family. For example, protein aggregation contributes to increased allergenicity of 2S albumins, while for legumins and cereal prolamins, the same phenomenon leads to a reduction. Molecular stability, related to structural resistance to heat and proteolysis, was identified as the most common feature promoting plant protein allergenicity, although it fails to explain the potency of some unstable allergens (e.g. pollen-related food allergens). Furthermore, data on physicochemical characteristics translating into clinical effects are limited, mainly because most studies are focused on in vitro IgE binding. Clinical data assessing how these parameters affect the development and clinical manifestation of allergies is minimal, with only few reports evaluating the sensitising capacity of modified proteins (addressing different physicochemical properties) in murine allergy models. In vivo testing of modified pure proteins by SPT or DBPCFC is scarce. At this stage, a systematic approach to link the physicochemical properties with clinical plant allergenicity in real-life scenarios is still missing.


Assuntos
Alérgenos , Hipersensibilidade Alimentar , Alérgenos/química , Animais , Hipersensibilidade Alimentar/etiologia , Humanos , Camundongos , Proteínas de Plantas , Pólen
5.
Vet Sci ; 8(10)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34679067

RESUMO

Resistance to anthelmintic drugs in gastrointestinal nematodes (GIN) of sheep is of high concern for livestock production worldwide. In Calabria (southern Italy), many plants have been used in ethnoveterinary medicine for parasite control in small ruminants. Here, we present an in vivo evaluation of anthelmintic efficacy of three plant extracts. The first was based on bark and leaves of Salix caprea, the second and the third were based on the whole plant Artemisia campestris and whole fruit (seeds and peel) of Punica granatum, respectively. Anthelmintic efficacy was evaluated according to the fecal egg count reduction test (FECRT) performed with the FLOTAC technique. The results showed a significant anthelmintic effect of Punica granatum macerate (50%), a low effectiveness of the Artemisia campestris macerate (20%), and a complete ineffectiveness of Salix caprea macerate (0.1%). With these outcomes, we report a P. granatum-based remedy reducing 50% GIN egg output. This result was obtained without using any synthetic drug, paving the way for the employment of green veterinary pharmacology (GVP) as a complementary and sustainable method to reduce the use of chemicals and to counteract anthelmintic resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA