Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(11)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37298326

RESUMO

The rapid development of antimicrobial resistance due to broad antibiotic utilisation in the healthcare and food industries and the non-availability of novel antibiotics represents one of the most critical public health issues worldwide. Current advances in nanotechnology allow new materials to address drug-resistant bacterial infections in specific, focused, and biologically safe ways. The unique physicochemical properties, biocompatibility, and wide range of adaptability of nanomaterials that exhibit photothermal capability can be employed to develop the next generation of photothermally induced controllable hyperthermia as antibacterial nanoplatforms. Here, we review the current state of the art in different functional classes of photothermal antibacterial nanomaterials and strategies to optimise antimicrobial efficiency. The recent achievements and trends in developing photothermally active nanostructures, including plasmonic metals, semiconductors, and carbon-based and organic photothermal polymers, and antibacterial mechanisms of action, including anti-multidrug-resistant bacteria and biofilm removal, will be discussed. Insights into the mechanisms of the photothermal effect and various factors influencing photothermal antimicrobial performance, emphasising the structure-performance relationship, are discussed. We will examine the photothermal agents' functionalisation for specific bacteria, the effects of the near-infrared light irradiation spectrum, and active photothermal materials for multimodal synergistic-based therapies to minimise side effects and maintain low costs. The most relevant applications are presented, such as antibiofilm formation, biofilm penetration or ablation, and nanomaterial-based infected wound therapy. Practical antibacterial applications employing photothermal antimicrobial agents, alone or in synergistic combination with other nanomaterials, are considered. Existing challenges and limitations in photothermal antimicrobial therapy and future perspectives are presented from the structural, functional, safety, and clinical potential points of view.


Assuntos
Anti-Infecciosos , Hipertermia Induzida , Nanoestruturas , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Nanoestruturas/uso terapêutico , Nanoestruturas/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Nanotecnologia
2.
Colloids Surf B Biointerfaces ; 213: 112423, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35231685

RESUMO

This work pledge to extend the therapeutic windows of hybrid nanoparticulate systems by engineering mannose-decorated hybrid nanoparticles based on poly lactic-co-glycolic acid (PLGA) and vegetable oil for efficient delivery of two lipophilic anti-inflammatory therapeutics (Celecoxib-CL and Indomethacin-IMC) to macrophages. The mannose surface modification of nanoparticles is achieved via O-palmitoyl-mannose spacer during the emulsification and nanoparticles assembly process. The impact of targeting motif on the hydrodynamic features (RH, PdI), stability (ζ-potential), drug encapsulation efficiency (DEE) is thoroughly investigated. Besides, the in vitro biocompatibility (MTT, LDH) and susceptibility of mannose-decorated formulations to macrophage as well their immunomodulatory activity (ELISA) are also evaluated. The monomodal distributed mannose-decorated nanoparticles are in the range of nanometric size (RH < 115 nm) with PdI < 0.20 and good encapsulation efficiency (DEE = 46.15% for CL and 76.20% for IMC). The quantitative investigation of macrophage uptake shows a 2-fold increase in fluorescence (RFU) of cells treated with mannose-decorated formulations as compared to non-decorated ones (p < 0.001) suggesting an enhanced cell uptake respectively improved macrophage targeting while the results of ELISA experiments suggest the potential immunomodulatory properties of the designed mannose-decorated hybrid formulations.


Assuntos
Manose , Nanopartículas , Anti-Inflamatórios/farmacologia , Portadores de Fármacos , Glicóis , Macrófagos , Tamanho da Partícula , Óleos de Plantas
3.
Int J Mol Sci ; 22(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375126

RESUMO

Gleditsia triacanthos is an aggressive invasive species in Eastern Europe, producing a significant number of pods that could represent an inexhaustible resource of raw material for various applications. The aim of this study was to extract cellulose from the Gleditsia triacanthos pods, characterize it by spectrophotometric and UHPLC-DAD-ESI/MS analysis, and use it to fabricate a wound dressing that is multi-functionalized with phenolic compounds extracted from the leaves of the same species. The obtained cellulose microfibers (CM) were functionalized, lyophilized, and characterized by ATR-FTIR and SEM. The water absorption and retention capacity as well as the controlled release of phenolic compounds with antioxidant properties evaluated in temporal dynamics were also determined. The antimicrobial activity against reference and clinical multi-drug-resistant Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii, Enterobacter cloacae, Candida albicans, and Candida parapsilosis strains occurred immediately after the contact with the tested materials and was maintained for 24 h for all tested microbial strains. In conclusion, the multi-functionalized cellulose microfibers (MFCM) obtained from the reproductive organs of an invasive species can represent a promising alternative for the development of functional wound dressings with antioxidant and antimicrobial activity, as well as being a scalable example for designing cost-effective, circular bio-economy approaches to combat the accelerated spread of invasive species.


Assuntos
Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Bandagens , Celulose/metabolismo , Gleditsia/metabolismo , Hidroxibenzoatos/metabolismo , Infecção dos Ferimentos/prevenção & controle , Anti-Infecciosos/metabolismo , Antioxidantes/metabolismo , Candida albicans/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Folhas de Planta/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Infecção dos Ferimentos/microbiologia
4.
Foodborne Pathog Dis ; 14(6): 341-349, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28398869

RESUMO

The current trend in reducing the antibiotic usage in animal production imposes urgency in the identification of novel biocides. The essential oil carvacrol, for example, changes the morphology of the cell and acts against a variety of targets within the bacterial membranes and cytoplasm, and our in vitro results show that it reduces adhesion and invasion of chicken intestinal primary cells and also biofilm formation. A trial was conducted to evaluate the effects of dietary supplementation of carvacrol at four concentrations (0, 120, 200, and 300 mg/kg of diet) on the performance of Lactobacillus spp., Escherichia coli, Campylobacter spp., and broilers. Each of the four diets was fed to three replicates/trial of 50 chicks each from day 0 to 35. Our results show that carvacrol linearly decreased feed intake, feed conversion rates and increased body weight at all levels of supplementation. Plate count analysis showed that Campylobacter spp. was only detected at 35 days in the treatment groups compared with the control group where the colonization occurred at 21 days. The absence of Campylobacter spp. at 21 days in the treatment groups was associated with a significant increase in the relative abundance of Lactobacillus spp. Also, carvacrol was demonstrated to have a significant effect on E. coli numbers in the cecum of the treatment groups, at all supplementation levels. In conclusion, this study shows for the first time that at different concentrations, carvacrol can delay Campylobacter spp., colonization of chicken broilers, by inducing changes in gut microflora, and it demonstrates promise as an alternative to the use of antibiotics.


Assuntos
Infecções por Campylobacter/veterinária , Galinhas/microbiologia , Monoterpenos/farmacologia , Doenças das Aves Domésticas/prevenção & controle , Ração Animal/análise , Animais , Infecções por Campylobacter/prevenção & controle , Campylobacter jejuni/efeitos dos fármacos , Campylobacter jejuni/isolamento & purificação , Ceco/efeitos dos fármacos , Ceco/microbiologia , Contagem de Colônia Microbiana , Cimenos , DNA Bacteriano/isolamento & purificação , Dieta/veterinária , Suplementos Nutricionais , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Ácidos Graxos/análise , Microbioma Gastrointestinal/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Lactobacillus/efeitos dos fármacos , Lactobacillus/isolamento & purificação , Masculino , Doenças das Aves Domésticas/microbiologia , RNA Bacteriano/isolamento & purificação , RNA Ribossômico 18S/isolamento & purificação , Análise de Sequência de DNA , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
5.
Int J Mol Sci ; 18(1)2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28106736

RESUMO

The antibacterial and anti-inflammatory potential of natural, plant-derived compounds has been reported in many studies. Emerging evidence indicates that plant-derived essential oils and/or their major compounds may represent a plausible alternative treatment for acne, a prevalent skin disorder in both adolescent and adult populations. Therefore, the purpose of this study was to develop and subsequently analyze the antimicrobial activity of a new multi-agent, synergic formulation based on plant-derived antimicrobial compounds (i.e., eugenol, ß-pinene, eucalyptol, and limonene) and anti-inflammatory agents for potential use in the topical treatment of acne and other skin infections. The optimal antimicrobial combinations selected in this study were eugenol/ß-pinene/salicylic acid and eugenol/ß-pinene/2-phenoxyethanol/potassium sorbate. The possible mechanisms of action revealed by flow cytometry were cellular permeabilization and inhibition of efflux pumps activity induced by concentrations corresponding to sub-minimal inhibitory (sub-MIC) values. The most active antimicrobial combination represented by salycilic acid/eugenol/ß-pinene/2-phenoxyethanol/potassium sorbate was included in a cream base, which demonstrated thermodynamic stability and optimum microbiological characteristics.


Assuntos
Acne Vulgar/prevenção & controle , Anti-Infecciosos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Plantas/química , Pele/efeitos dos fármacos , Acne Vulgar/microbiologia , Adolescente , Adulto , Monoterpenos Bicíclicos , Compostos Bicíclicos com Pontes/uso terapêutico , Cicloexanóis/uso terapêutico , Cicloexenos/uso terapêutico , Eucaliptol , Eugenol/uso terapêutico , Citometria de Fluxo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Limoneno , Testes de Sensibilidade Microbiana , Monoterpenos/uso terapêutico , Fitoterapia/métodos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Pele/microbiologia , Pele/patologia , Creme para a Pele/uso terapêutico , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Terpenos/uso terapêutico , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA