RESUMO
Yogurt is a nutritious food that is regularly consumed in many countries around the world and is widely appreciated for its organoleptic properties. Despite its contribution to human dietary requirements, yogurt in its traditional recipe is a poor source of fat-soluble vitamins. To respond to consumer demands and further increase the nutritional value of this product, this work aimed to fortify yogurt with vitamin E by using emulsification as the method of encapsulation. The effects of thermal processing and chilled storage on the physicochemical stability of the yogurt-based beverage was investigated. Vitamin E was only minorly affected by bulk pasteurization at 63 °C for 30 min and remained stable during storage at 4 °C for 28 days. Fortified samples showed increased in vitro antioxidant activity compared with non-fortified samples. Lactic acid bacterial counts were above the minimum recommended levels (>106 cfu/g) after processing and storage. In conclusion, this work has demonstrated that emulsification can be an effective strategy for developing yogurt-based products fortified with fat soluble vitamins.
Assuntos
Encapsulamento de Células/métodos , Vitamina E/análise , Iogurte/análise , Animais , Técnicas de Cultura Celular por Lotes/métodos , Bebidas , Emulsões/química , Emulsões/farmacologia , Fermentação , Manipulação de Alimentos , Alimentos Fortificados/análise , Leite/química , Pasteurização/métodos , Vitamina E/químicaRESUMO
PURPOSE: Low fruit and vegetable consumption is linked with an increased risk of death from vascular disease and cancer. The benefit of eating fruits and vegetables is attributed in part to antioxidants, vitamins and phytochemicals. Whether increasing intake impacts on markers of disease remains to be established. This study investigates whether increasing daily intake of fruits, vegetables and juices from low (approx. 3 portions), to high intakes (approx. 8 portions) impacts on nutritional and clinical biomarkers. Barriers to achieving the recommended fruit and vegetable intakes are also investigated. METHOD: In a randomised clinical trial, the participants [19 men and 26 women (39-58 years)] with low reported fruit, juice and vegetable intake (<3 portions/day) were randomised to consume either their usual diet or a diet supplemented with an additional 480 g of fruit and vegetables and fruit juice (300 ml) daily for 12 weeks. Nutritional biomarkers (vitamin C, carotenoids, B vitamins), antioxidant capacity and genomic stability were measured pre-intervention, at 4-, 8- and 12 weeks throughout the intervention. Samples were also taken post-intervention after a 6-week washout period. Glucose, homocysteine, lipids, blood pressure, weight and arterial stiffness were also measured. Intake of fruit, fruit juice and vegetables was reassessed 12 months after conducting the study and a questionnaire was developed to identify barriers to healthy eating. RESULTS: Intake increased significantly in the intervention group compared to controls, achieving 8.4 portions/day after 12 weeks. Plasma vitamin C (35%), folate (15%) and certain carotenoids [α-carotene (50%) and ß-carotene (70%) and lutein/zeaxanthin (70%)] were significantly increased (P < 0.05) in the intervention group. There were no significant changes in antioxidant capacity, DNA damage and markers of vascular health. Barriers to achieving recommended intakes of fruits and vegetables measured 12 months after the intervention period were amount, inconvenience and cost. CONCLUSION: While increasing fruit, juice and vegetable consumption increases circulating level of beneficial nutrients in healthy subjects, a 12-week intervention was not associated with effects on antioxidant status or lymphocyte DNA damage. TRIAL REGISTRATION: This trial was registered at Controlled-Trials.com; registration ISRCTN71368072.